Agilent Bio-Monolith Protein A Monitors Monoclonal Antibody Titer from Cell Cultures - - Chromatography Online
Agilent Bio-Monolith Protein A Monitors Monoclonal Antibody Titer from Cell Cultures

The Application Notebook
pp. 164-166

Analytical Protein A columns are used to determine the titer of monoclonal antibodies for the optimal time for harvest of the monoclonal antibody product. In this application note, Agilent Bio-Monolith Protein A columns are used to illustrate the quick capture of monoclonal antibody titer from cell supernatant.

Methods and Materials

Sodium phosphate monobasic monohydrate (Sigma p/n S3522), sodium phosphate dibasic anhydrous (Sigma p/n RES20908-A7), citric acid monohydrate (Sigma-Aldrich [p/n C1909]), and an Escherichia coli cell-lysis kit were purchased from Sigma-Aldrich Corp. (p/n CB0500). Humanized CHO-cell derived monoclonal antibody (IgG1) was purchased from Bio-Creative Labs.

Eluent A is used for equilibration, binding, and re-equilibration. This buffer contained 20 mM sodium phosphate buffer, pH 7.4. To make 1 L of 20 mM sodium phosphate buffer, pH 7.4, dissolve 3.1 g of NaH2PO4•H2O and 10.9 g of Na2HPO4 (anhydrous) in distilled H2O to make a volume of 1 L. This is 0.1 M (100 mM) sodium phosphate buffer with pH 7.4 at 25 C. This buffer can be stored for up to 1 month at 4 C. This stock solution is then diluted 1:5 with deionized water (take 200 mL of stock solution and add 800 mL deionized water) to obtain 20 mM sodium phosphate buffer, pH 7.4. Eluent B is used for protein elution and contains 0.1 M citric acid, pH 2.8. To make 1 L of citric acid buffer, weigh out 21 g of citric acid monohydrate, dissolve it in approximately 600 mL of water with gentle stirring, and adjust the pH with 1 M HCl until the pH is 2.8. Finally, dilute the solution with deionized water to the 1 L mark in a volumetric flask.

The manufacturer's recommended protocol was followed to obtain E. coli supernatant. The estimated concentration of protein was 40 mg/mL. The supernatant was then spiked with IgG1 as described; 40 mg/mL E. coli supernatant spiked with 2.5 mg/mL purified humanized IgG1. After mixing, the mixture was diluted further with mobile phase A (20 mM sodium phosphate buffer, pH 7.4) with a 1:1 ratio to a final concentration of 1.25 mg/mL of IgG1 and 20 mg/mL E. coli supernatant.


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: The Application Notebook,
Click here