Antibody Drug Conjugate (ADC) Analysis with SEC–MALS - - Chromatography Online
Antibody Drug Conjugate (ADC) Analysis with SEC–MALS

The Application Notebook
pp. 393

There has been a significant resurgence in the development of antibody-drug conjugates (ADC) as target-directed therapeutic agents for cancer treatment. Among the factors critical to effective ADC design is the Drug Antibody Ratio (DAR). The DAR describes the degree of drug addition that directly impacts both potency and potential toxicity of the therapeutic, and can have significant effects on properties such as stability and aggregation. Determination of DAR is, therefore, of critical importance in the development of novel ADC therapeutics.

DAR is typically assessed by mass spectrometry (MALDI–TOF or ESI–MS) or UV spectroscopy. Calculations based on UV absorption are often complicated by similarities in extinction coefficients of the antibody and small molecule. Mass spectrometry, though a powerful tool for Mw determination, depends on uniform ionization and recovery between compounds — which is not always the case for ADCs.

Here we present a method for DAR determination based on SEC–MALS in conjunction with UV absorption and differential refractive index detection. Figure 1 shows UV traces for two model ADCs; molecular weights of the entire ADC complexes are determined directly from light scattering data.

Figure 1: Molar masses for two distinct ADC formulations are determined using SEC–MALS analysis.
Component analysis is automated within the ASTRA 6 software package by using the differential refractive index increments (dn/dc) and extinction coefficients, which are empirically determined for each species or mined from the literature, to calculate the molar mass of the entire complex as well as for each component of the complex.

Figure 2: Molar masses for the antibody and total appended drug are calculated in the ASTRA software package based on prior knowledge of each component’s extinction coefficent and dn/dc, allowing determination of DAR based on a nominal Mw of 1250 Da for an individual drug.
In this example an antibody has been alkylated with a compound having a nominal molecular weight of 1250 Da (Figure 2). Molar masses of the antibody fractions are similar, which indicates that the overall differences between the two formulations reflect distinct average DARs that are consistent with values obtained by orthogonal techniques. Note that the molar mass traces for the conjugated moiety represent the total amount of attached pendant groups; the horizontal trends indicate that modification is uniform throughout the population eluting in that peak.

Wyatt Technology Corporation
6300 Hollister Avenue, Santa Barbara, California 93117, USA
Tel: +1 (805) 681 9009 Fax: +1 (805) 681 0123


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: The Application Notebook,
Click here