Current Practices and Considerations for a Stability-Indicating Method in Pharmaceutical Analysis - - Chromatography Online
Current Practices and Considerations for a Stability-Indicating Method in Pharmaceutical Analysis

LCGC North America
pp. 568-575

The demonstration of drug substance (DS) or drug product (DP) stability over the shelf life is a regulatory requirement in the pharmaceutical industry. To fulfill this requirement, a stability-indicating method (SIM) must be developed and validated to separate and quantify both the active pharmaceutical ingredient (API) and its related compounds (process impurities and degradation products). This article discusses the characteristics and relevant considerations for the development and validation of a SIM.

Photo Credit: Getty Images/Ethan Myerson
Concerns over the inability of a drug product (DP) to meet quality standards over the course of its shelf life have been present since the early 1970s. In 1975, the United States Pharmacopeia (USP) added a clause about the expiration dating of drug products. The US Food and Drug Administration (US FDA) provided the first stability guideline in 1984. The US FDA took further steps in 1987 by issuing guidelines for the submission of stability information and data for Investigational New Drugs (IND) and New Drug Applications (NDA). The International Conference on Harmonization (ICH) created the Q1A guideline in 1993 to harmonize the requirements for international marketing in Japan, the United States, and the European Union. Additional guidelines that followed from ICH included Q7A, GMP guide for active pharmaceutical ingredients (API). More recently, the World Health Organization (WHO) has released guidelines on the stability of pharmaceuticals (1).

Despite all of the requirements from the regulatory and governing entities, there is still not a clear consensus of what constitutes a stability-indicating method (SIM). The guidance documents also do not provide details about the scope and degradation study practices (1). Unfortunately, this leaves many in the industry with a requirement that must be achieved but without clear direction. This article will review existing literature and current best practices for a SIM. The objectives for a SIM, the process for development and validation, and the critical characteristics are also discussed.

Defining Objectives of the Method

The method objectives should be defined early, so the development process can be clearly established. For example, the analytes that need to be separated should be established early in the process. Stress testing or forced degradation studies can be useful in defining degradation products and the major degradative pathways. In general, for Abbreviated New Drug Application (ANDA) development of generic drug products, only compounds that exceed the ICH threshold for reporting should be investigated unless special toxicology concerns (for example, genotoxic impurities) are known. After it is known which compounds are of interest, further objectives such as desired resolution, limit of quantitation (LOQ), precision and accuracy, analysis time, and adaptability for automation can be defined (2).

For biologics, a series of methods based on orthogonal approaches may be required to achieve a SIM (1). Biologics degrade in a much different manner than small molecules. To identify all of the degradation pathways requires a variety of biochemical, biophysical, and biological methods, which can lead to a lengthy process (3). While small molecules generally degrade following first order kinetics, biologics can follow secondary or higher order kinetics that may not fit to linear or exponential curves. Degradation of biologics can be both chemical (oxidation, de-amidation, disulfide bond rearrangement, hydrolysis) and physical (aggregation, adsorption, loss of three-dimensional structure) (4).


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: LCGC North America,
Click here