Elevated Temperatures in Liquid Chromatography, Part III: A Closer Look at the van 't Hoff Equation - - Chromatography Online
Elevated Temperatures in Liquid Chromatography, Part III: A Closer Look at the van 't Hoff Equation


LCGC North America
Volume 30, Issue 12, pp. 1052-1065

Part I of this article series discussed some of the advantages of and practical considerations for elevated temperature separations in liquid chromatography (LC) (1). Part II reviewed some of the basic thermodynamics of chromatography and elevated temperature separations, which included a brief derivation and discussion of the van 't Hoff equation (2). This third and final part continues the exploration of elevated temperatures in LC with a more detailed discussion of the van 't Hoff equation, exploring its usefulness and relevance using various examples from the literature.



Van 't Hoff plots can be a useful and interesting part of data analysis for high-temperature liquid chromatography (LC). Here, in part III of this series, we take a closer look at the van 't Hoff equation using various examples from the literature.

Review of the Advantages of Elevated-Temperature Separations

Elevated temperatures offer a number of benefits in LC. One such benefit is that they facilitate retention mapping in which the retention factor, k, is measured at different temperatures so that the values of k over a range of temperatures can be predicted (3,4). Retention mapping can also include the probing and predicting of k at different mobile-phase compositions and is widely used in method development (3,5,6). Another benefit is that selectivity (α) may change with temperature, which is important for retention mapping and is another parameter that can be considered in method development (3,5,6). Also, increasing temperatures can improve sample throughput because the van Deemter minima shifts to higher flow rates; that is, the optimal efficiency for a separation shifts to a higher mobile-phase velocity (7–9). Finally, a decrease in the organic modifier is possible due to the change in the polarity of water at increasing temperatures; water behaves more like an organic solvent at elevated temperatures. Furthermore, a more aqueous mobile phase is considered "greener" because of a reduction in the amount of organic modifier used (10–14). Clearly, there are good reasons for considering the use of elevated temperatures in LC. Now, let's discuss various aspects of high-temperature separations in the context of the van 't Hoff equation.

Review of the van 't Hoff Equation




The van 't Hoff equation is derived from the following two basic thermodynamic equations:




where ΔG 0 is the Gibbs free energy, ΔH 0 is the enthalpy of transfer, T is the absolute temperature in kelvins, ΔS 0 is the entropy of transfer, R is the gas constant, and K is the equilibrium constant. When we equate these two equations and solve for ln K we achieve the van 't Hoff equation:




As discussed in part II (2), ln K = ln kβ, where k is the retention factor and β is the phase ratio (V M/V S) — the ratio of the mobile-phase volume and stationary-phase volume. By substituting kβ for K in equation 3 we obtain the van 't Hoff equation as it is commonly encountered in LC:




Note that sometimes Φ is used instead of β, where Φ = 1/β = V S/V M. Thus, an equivalent form of equation 4 is:

Unfortunately, both β and Φ are referred to as the "phase ratio."


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Sample Prep Perspectives | Ronald E. Majors:

LCGC Columnist Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments in existing technology lines.

LATEST: The Role of Selectivity in Extractions: A Case Study

History of Chromatography | Industry Veterans:

With each installment of this column, a different industry veteran covers an aspect of the evolution and continued development of the science of chromatography, from its birth to its eventual growth into the high-powered industry we see today.

LATEST: Georges Guiochon: Separation Science Innovator

MS — The Practical Art| Kate Yu:
Kate Yu is the editor of 'MS-The Practical Art' bringing her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers.

LATEST: Mass Spectrometry for Natural Products Research: Challenges, Pitfalls, and Opportunities


LC Troubleshooting | John Dolan:

LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan, Vice President of LC Resources and world renowned expert on HPLC, is able to highlight common problems and provide remedies for them.

LATEST: LC Method Scaling, Part I: Isocratic Separations

More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC North America,
Click here