Application of Existing Sample Preparation Technologies to New Areas - - Chromatography Online
Application of Existing Sample Preparation Technologies to New Areas


LCGC North America
Volume 31, Issue 11, pp. 914-924

New sample preparation technologies are being proposed all of the time. Many are novel and interesting but will never have a big impact on the sample preparation scene. Some, however, have been remarkably successful, such as solid-phase microextraction, QuEChERS, and stir-bar sorbent extraction. Over the next few installments of "Sample Prep Perspectives," we will examine some newer sample preparation approaches that may have the potential to break away from the field and become mainstay techniques. This first installment features techniques that have been introduced in the past and are now being used in new application areas.

Although sample preparation is an important part of this analytical cycle, it doesn't always get the respect that the separation and measurement instrumentation and the data handling aspects receive. Oftentimes, the task of sample preparation is delegated to the junior staff members who employ decades-old technology that is often manual, time-consuming, and uses a large amount of glassware and other devices. Some of the older technologies use copious amounts of solvent that must eventually be disposed of, creating expense and safety issues. Because of the use of multiple sample preparation steps in an attempt to simplify and isolate the desired analytes from a complex matrix, errors tend to creep into the assay and analyte recoveries may suffer. These observations and concerns cause many to consider sample preparation as the last bottleneck in the analytical laboratory.

In addition, sample preparation doesn't always receive the attention of the academic community because they consider the technologies dealing with preparing the sample to be simplistic and mundane and not real science. Nevertheless, if samples are not representative of the original source and are not collected, transported, and stored properly and considerable care is not taken in handling and preparing the sample in the laboratory then all the great analysis that takes place after the sample is presented to the instrument is for naught.

Despite all these obstacles, the need for faster, simpler, solvent-free, automatable sample preparation still exists. Because of the vast improvements in other parts of the analytical cycle, especially in the chromatographic analysis and detection (for example, mass spectrometry [MS]), there have been great strides in reducing the volume of sample required. This sample volume reduction in turn presents further challenges such as the need for more careful sampling but on the positive side results in a corresponding reduction in the amount of solvent and other chemicals needed for preparing the sample. The result is a reduction in overall sample preparation time and the cost of purchase and disposal of chemicals. Miniaturized sample preparation techniques such as solid-phase microextraction (SPME), single-drop microextraction, hollow-fiber membrane extractions, and microextraction by packed sorbent (MEPS) have been introduced that decrease solvent requirements by 100-fold or more. On the other hand, some of these newer technologies require more time for equilibration and thus there is a tradeoff in speed versus solvent usage.

I have been writing about sample preparation for some time and tend to collect articles and manufacturer's literature on sample preparation techniques that have been published or introduced that could become the next mainstream technique like SPME or QuEChERS (quick, easy, cheap, efficient, rugged, and safe). In this installment and in two future installments of "Sample Prep Perspectives" I will cover a number of technologies that could "cross the chasm" and become more widely used. In formulating these presentations, I divided the technologies into three categories:

  • Existing technologies that have found new and different application areas from their original intent;
  • New media that could be more useful in liquid–solid extractions (to be covered in a future installment); and
  • New approaches to sample preparation that could bring added value (to be covered in a future installment).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Sample Prep Perspectives | Ronald E. Majors:

LCGC Columnist Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments in existing technology lines.

LATEST: The Role of Selectivity in Extractions: A Case Study

History of Chromatography | Industry Veterans:

With each installment of this column, a different industry veteran covers an aspect of the evolution and continued development of the science of chromatography, from its birth to its eventual growth into the high-powered industry we see today.

LATEST: Georges Guiochon: Separation Science Innovator

MS — The Practical Art| Kate Yu:
Kate Yu is the editor of 'MS-The Practical Art' bringing her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers.

LATEST: Mass Spectrometry for Natural Products Research: Challenges, Pitfalls, and Opportunities


LC Troubleshooting | John Dolan:

LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan, Vice President of LC Resources and world renowned expert on HPLC, is able to highlight common problems and provide remedies for them.

LATEST: LC Method Scaling, Part I: Isocratic Separations

More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC North America,
Click here