UV Detector Problems - - Chromatography Online
UV Detector Problems


LCGC North America
pp. 404-419

Ultraviolet (UV) detectors are the most common liquid chromatography (LC) detector, and perhaps the most reliable ones. But they are not without problems.

I recently received an e-mail question from a reader complaining of a leaking detector cell in the ultraviolet (UV) detector attached to his liquid chromatography (LC) system. This seems like a good opportunity to address that specific question, other UV detector problems, and some of the more recent advances in detector design. Although the present discussion centers on UV detectors, many aspects will apply to other optical detectors, such as fluorescence or refractive index detectors.

Detector Design

First, let's take a look at how the typical detector cell is constructed and we'll be able to see where leakage can occur. After we have that information, correcting the problem should be straightforward.


Figure 1: Schematic of a conventional UV detector cell. See text for details.
For UV detectors designed to operate with conventional LC systems with upper pressure limits of 6000 psi (400 bar), the construction shown in Figure 1 is common. The cell itself is made by drilling a 1-mm hole through a 10-mm-long block of stainless steel. To contain the liquid, a quartz window is attached to each end of the cell and a seal is formed with a polymeric gasket. The mobile phase needs to pass through the cell, so a provision is made for this by drilling small-diameter (for example, ≤0.125 mm i.d.) holes to connect the outside world with the cell cavity. Most commonly, the entrance and exit holes are on opposite sides and opposite ends of the cell so that the flow path is Z-shaped. This allows efficient washout and clearance of bubbles, should they enter the cell. UV light then passes through the cell from one end to the other. When sample peaks pass through the cell, some of the UV light is absorbed, and a photodiode measures this absorbance by the change in the intensity of light passing through the cell.

The amount of light passing through the mobile phase at steady state (no sample present) is affected by the refractive index of the mobile phase. Any change in refractive index will result in more or less light making it through the cell, and the baseline will drift or exhibit other disturbances. To help mitigate temperature-related refractive-index disturbances, a heat exchanger is usually fitted to the inlet of the cell. Most commonly this is a stainless steel capillary wrapped around the body of the cell and covered with a heat-conducting material so that the fluid entering the light path is thermally stabilized, and temperature-induced background disturbances are minimized.

Another potential problem is the presence of air bubbles in the flow cell. Even though the mobile phase is usually degassed before use, when the mobile phase leaves the column, it moves from a high-pressure region to a near-atmospheric pressure region. When this happens, any residual air present tends to outgas from the mobile phase and form physical bubbles. When air bubbles enter the flow cell, they disrupt the light path and result in a noise spike or false peak in the chromatogram. Usually, bubbles continue through the flow cell and clear by themselves, but tiny microbubbles sometimes become lodged in the corners of the cell that are less well swept. These bubbles can "bounce" in the flow stream and cause additional baseline problems. To help avoid bubble problems in the cell, pressure can be applied to the cell outlet so that the internal pressure in the cell is sufficient to keep the bubbles in solution. Restricting the flow at the outlet of the flow cell can be somewhat delicate — we want to have enough pressure to keep any bubbles in solution until they leave the cell, but we don't want so much pressure that the cell leaks. The most common practice to provide back pressure on the cell is to use a piece of capillary tubing as the waste line. A narrow capillary will restrict the mobile-phase flow and create pressure upstream. The pressure thus created is dependent on the mobile-phase viscosity, temperature, and flow rate. Because pressure will increase with flow rate, there is a risk that increased pump flow, such as might be used to flush a column, will create sufficient pressure to exceed the flow-cell pressure limits (cell pressure limits should be listed in the "specifications" section of the detector manual, but typically are in the 150-psi or 10-bar region). A better solution to provide back pressure on the cell is to use a back-pressure restrictor that generates a constant pressure. These restrictors are constructed like a spring-loaded check valve that opens when the pressure exceeds a set value less than the detector cell maximum. Back-pressure restrictors can be purchased from most suppliers of LC tubing and fittings.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Column Watch | Ronald E. Majors: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: Standardized Testing of Silica as a Base Material for Difficult Bonded-Phase Preparative Applications


Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: Seven Common Faux Pas in Modern HPLC


MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis


LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Retention Time Variation Is Normal?


More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC North America,
Click here