Ultrahigh-Efficiency Protein Separations with Submicrometer Silica Using Slip Flow - - Chromatography Online
Ultrahigh-Efficiency Protein Separations with Submicrometer Silica Using Slip Flow


LCGC North America
Volume 30, Issue 10, pp. 890-897

Professor Mary Wirth and graduate students Bingchuan Wei and Benjamin Rogers from Purdue University demonstrate a quantum leap in protein column efficiency. Using colloidal silica particles of submicrometer diameters (470 nm), they obtained plate heights that were as much as 15-fold lower than the theoretical limit for Hagen-Poiseuille flow. The smallest plate height was 15 nm, 500-fold smaller than previous reports for pressure-driven protein chromatography. This remarkable achievement was attributed to "slip flow," which is explained in this installment. The authors also present a practical example using this new concept.

The plate heights of commercial liquid chromatography (LC) columns have changed little over the last 20 years, following the trend of H min ≈ 2d p, where d p is the particle diameter (1). Simulations have shown that H mind p is the limit for nonporous particles (2). With particle sizes dropping by only a factor of about two during the last 20 years, as such plate heights have improved by the same factor. The reason is not a lack of diligence or creativity; instead, it is because of the fundamental limits of mass transport, with the ultimate limit being the velocity spread of the mobile phase across the spaces between particles. We recently used a nanofluidic phenomenon called slip flow (3–8), which greatly reduces this velocity spread, thereby reducing the plate height dramatically. We demonstrated a plate height as low as 0.03 d p, which was 15 nm (9). This opens a new horizon for efficiency in ultrahigh-pressure liquid chromatography (UHPLC).


Figure 1: Illustration of how slip flow gives a narrower velocity distribution compared to Hagen Poiseuille flow. The velocity is far from zero at the wall for slip flow.
The concept of slip flow is illustrated in Figure 1. Imagine that the walls are the surfaces of two adjacent particles. The familiar Hagen-Poiseuille flow is depicted with its parabolic velocity profile, in which the velocity goes to zero at the walls. This is the realm of chromatography today. The figure also depicts slip flow, in which the velocity does not go to zero at the walls, thereby giving rise to a narrower distribution of velocities in the column. Slip flow occurs when the molecular interactions between fluid and the surface are weak, allowing the fluid at the interface to have a nonzero velocity. The existence of slip flow is common knowledge in the field of fluid dynamics, where it is typically a small correction factor when there are weak fluid–surface interactions, but it becomes a big factor when the channel reaches the scale of tens of nanometers (3–8). Consequently, slip flow always occurs in reversed-phase LC, but it is not distinguishable from Hagen-Poiseuille flow because the dimensions of chromatographic materials are relatively large. The nanoscale channel dimensions are achieved by using submicrometer particles.




Experimentally, the parabolic flow profile cannot be directly viewed on the nanoscale, but it can be inferred because one can measure a companion to the narrower flow profile: a faster flow rate. Because slip flow gives a nonzero velocity at the wall, the volume flow rate, Q, is enhanced relative to that for Hagen-Poiseuille flow, Q HP. In equation 1, for a capillary of radius r, the term L s is the slip length, which is defined as the ratio of the velocity to shear rate, each at the wall.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Sample Prep Perspectives | Ronald E. Majors:

LCGC Columnist Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments in existing technology lines.

LATEST: The Role of Selectivity in Extractions: A Case Study

History of Chromatography | Industry Veterans:

With each installment of this column, a different industry veteran covers an aspect of the evolution and continued development of the science of chromatography, from its birth to its eventual growth into the high-powered industry we see today.

LATEST: Georges Guiochon: Separation Science Innovator

MS — The Practical Art| Kate Yu:
Kate Yu is the editor of 'MS-The Practical Art' bringing her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers.

LATEST: Mass Spectrometry for Natural Products Research: Challenges, Pitfalls, and Opportunities


LC Troubleshooting | John Dolan:

LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan, Vice President of LC Resources and world renowned expert on HPLC, is able to highlight common problems and provide remedies for them.

LATEST: LC Method Scaling, Part I: Isocratic Separations

More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC North America,
Click here