Simultaneous determination of mineral acids, fluoride and silicate in etching baths by ion chromatography with dual detection - - Chromatography Online
Simultaneous determination of mineral acids, fluoride and silicate in etching baths by ion chromatography with dual detection

LCGC Asia Pacific
Volume 14, Issue 2, pp. 37-39

The presented ion chromatographic method is used for the simultaneous determination of HF, HNO 3 , H2SO4, short-chain organic acids and H2SiF6 in acidic texturing baths that are used in the wet chemical etching process of solar cell production. Fluoride, nitrate, sulphate and acetate are determined by conductivity detection after chemical suppression, while the silicon present in the form of hexafluorosilicate is detected spectrophotometrically as molybdosilicic acid after derivatization in the same analysis. The analytical results are validated by titration.

Introduction

Energy production from renewable sources such as biomass, biogas, biofuels, water, wind and solar power is becoming increasingly important in our energy-hungry society. Particular interest is given to solar energy, which by human criteria is inexhaustible. Solar cells used in photovoltaic units convert the radiation energy in sunlight directly into electric energy.


Figure 1: 850 Professional IC Anion – MCS and 858 Professional Sample Processor.
Solar cells are manufactured from ultrapure mono- or polycristalline silicon wafers whose surface is treated in acid etching baths (also known as texturing baths) before being spiked with foreign atoms (P, B). The etching solutions consist of various acids, which act as an oxidizing agent (HNO3), complexing agent (HF), stabilizer and wetting agent (CH3COOH), or buffers (H3PO4, CH3COOH) and determine the surface structure and thus the efficiency of the solar cells. The replenishment of components used up in the etching process extends the bath life and saves costs, though it does require knowledge of the exact composition of the bath, especially the concentration of silicon and hexafluorosilicate. By using titration and ion chromatography (IC), it is possible to determine the key components quickly and precisely.

This article describes an ion chromatographic method that separates all relevant components in the bath on an anion-exchange column and identifies them by dual detection in a single run. After suppressed conductivity detection of the acid anions, the undissociated silicic acid reacts in a post-column reaction (PCR) to form molybdosilicic acid, which is determined spectrophotometrically at 410 nm. The concentrations of fluoride and hexafluorosilicate are determined by way of a simple stoichiometric calculation that is performed by the chromatography software.

Instruments and Reagents

a) Instrument setup

  • 850 Professional IC Anion – MCS with post-column reactor
  • 858 Professional Sample Processor
  • Lambda 1010 UV/VIS Detector
  • 771 IC Compact Interface
  • MagIC Net chromatography software

b) Reagents and eluent
The standard solutions were prepared with CertiPUR standards from Merck (SiO2 in NaOH; solutions of NaF and NaNO3 in ultrapure water) and the TraceCERT standard from Fluka (acetate solution). All the standard and eluent solutions were prepared with ultrapure water with a specific resistance of more than 18 MΩ·cm. Etching bath samples were provided by a solar cell manufacturer from Germany.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration


Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies


MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis


LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase


More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC Asia Pacific,
Click here