Teaching Old Drugs New Tricks - - Chromatography Online
Teaching Old Drugs New Tricks

The Column
Volume 10, Issue 11, pp. 210

James Frahill, who is a Research Analyst at the Pfizer Process Development Centre (Cork, Republic of Ireland) spoke to Bethany Degg of The Column about the role of the chromatographer in the pharmaceutical process development group at Pfizer.

Q. What are the main objectives of your research group?

A: We are a pharmaceutical process development group. We are tasked with developing new synthetic routes to active pharmaceutical ingredients (APIs) that are already established products in the market place. The group uses novel synthetic chemistry, new technology, and innovation tools to design and deliver these new processes. This approach has led us in the past to deliver processes that include flow chemistry technology, enantioselective enzyme reactions, phase transfer catalysts, and more.

Q. How do you use analytical chemistry to develop new synthetic routes to APIs?

James Frahill
A: The analytical support underpinning the process development activities is a critical part of delivering these new processes. The analytics that support the process development gives us our understanding of what is happening in the process. We monitor reaction rates, product formation and purity, impurity profiles, and so on. In order to achieve a high standard of process understanding, we are continually developing new analytical methods, both spectroscopic and chromatographic, to cope with the changing matrix of the samples generated by the developing chemistry. The analytical activities in the group cover a range of tasks such as quality testing of isolated intermediates and APIs, identification and structural elucidation of unknown compounds or impurities formed in the new chemistry, analysis of enantiomers, and identification and control of any possible genotoxic impurities (GTIs) and on-line process analytical technology such as UV and IR measurements made at the reaction itself.

Typically, the methods developed during the process development are evolved into the analytical test methods that are validated and are filed with regulatory bodies during the process filing.

In the drive to get better process understanding the analytical group leverages any useful technology available in the market place to deliver the results required. We have recently expanded our collection of detectors by adding a charged aerosol detector (CAD) and a quadrupole time-of-flight (Q-TOF) mass spectrometer to our array of orthogonal chromatography systems which include reverse-phase high performance liquid chromatography (HPLC) and ultrahigh-pressure liquid chromatography (UHPLC), non aqueous reverse-phase HPLC, normal phase HPLC, and supercritical fluid UHPLC.

Q. What is the focus of your research at the present time?

A: At the moment I am working on impurity identification. I am analyzing samples generated by our new process chemistry using LC–QTOF-MS. I use the high resolution of the instrument in MS mode to generate the molecular formulae for the peaks of interest. We then conduct MS–MS experiments on each of the impurities and determine the structure of the impurities by assigning structures to the fragment ions generated in the MS–MS experiment.

Nobody can claim to be able to do de novo structural elucidation using MS and MS–MS data alone, but given the limited amount of transformations possible in a pharmaceutical chemistry reaction, we can elucidate structures from the data with a high degree of confidence. We then synthesize the proposed structure and confirm its identity under the original analytical technique.


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: The Column,
Click here