Static Headspace GC–MS Detection of Residual Solvents—A Possible Simultaneous Identification and Quantitation Method - - Chromatography Online
Static Headspace GC–MS Detection of Residual Solvents—A Possible Simultaneous Identification and Quantitation Method

LCGC North America
Volume 30, Issue 1, pp. 64-75

The current US Pharmacopeia (USP) general chapter "Residual Solvents" <467> uses flame ionization detection for two identification procedures and one quantitation procedure. This article reports on the development and validation of a single gas chromatography–mass spectrometry (GC–MS) procedure that provides identity parameters for headspace-applicable residual solvent Class 1 and Class 2 compounds addressed in the current <467> method. It also provides validation for quantitation of all Class 2 residual solvents capable of being analyzed by headspace. This procedure shortens analysis time, combines the two identification procedures with one quantitation procedure, and modifies system suitability requirements but still uses an external standard. This GC–MS procedure is an effective identification test, but presents challenges in quantifying residual solvents below their concentration limits. This article does not address known problems in sample preparation, but presents interim progress in detection that may contribute to a revision of <467>.

Organic volatile impurities, commonly known as residual solvents, are used or produced in the manufacturing processes of drug substances, excipients, and drug products (1). Residual solvents serve no therapeutic use and should be removed to the highest extent possible. Those that are not removed should be limited below prescribed concentrations (2). These often are measured using methods described in US Pharmacopeia's (USP) current general chapter "Residual Solvents" <467> (1).

"Residual Solvents" <467> involves a three-step process for identifying and quantifying known residual solvents in pharmaceuticals (1). The chapter provides classification lists for three types of residual solvents and concentration limits expressed in parts per million (ppm) for Class 1, Class 2, and Class 3 residual solvents. Chapter <467> provides a stepwise process for evaluating Class 1 and Class 2 residual solvents based on the solubility of the material being tested. Class 2 residual solvents that cannot be evaluated by headspace analysis are not discussed here, or in the chapter. The general chapter provides sample preparations that include stepwise dilutions for reference standards and samples in which the concentration of the final dilution, before diluting into the headspace vial, is at the residual solvents' allowed concentration limits. For this article, the residual solvents' concentration limits are named the 100% limit concentration. The <467> procedures also include solution preparation information, gas chromatography with flame ionization detection (GC–FID) parameters, headspace parameters, system suitability requirements, and quantitation calculations based on sample findings. Although the evaluation and preparation methods have undergone many revisions, the chapter still has drawbacks (3). For example, instrument evaluation time is extensive because two separate instrumental methods and specific columns are needed to achieve residual solvent resolution in the current <467> GC–FID method; the multistep dilutions used for sample preparations are prone to residual solvent loss; and the system suitability tests require Class 1 residual solvents that have the most safety and health hazards (4). Many people have informed USP that the Class 1 residual solvents required are the most hazardous chemicals used in their laboratories and that they would like to avoid these kinds of health and safety hazards. This article reports the incorporation of time-saving mass spectrometry (MS) detection that may reduce the identification analyses from two method parameter sets to one and a way to reduce the need for Class 1 compounds in establishing system suitability. The changes presented here could be considered for inclusion in United States Pharmacopeia–National Formulary (USPNF), but would not necessarily replace the current FID method. Of course, all additions and changes are subject to public comment.

MS detection provides better selectivity than FID because it combines spectral and chromatographic identification (5,6). Unique mass spectra often eliminate resolution requirements. Residual solvents could be orthogonally identified spectrally or chromatographically, allowing for the identification of coeluted compounds and, thereby, removing chromatographic resolution requirements (1,7). This takes advantage of the compound specificity of MS and decreases the analysis times. The change of detector may be suitable for inclusion in USP's method for evaluation of residual solvents. Presented here is the method development and validation of a possible MS method that does not include Class 1 residual solvents in system suitability. The current <467> GC–FID method requires the use of Class 1 residual solvents to meet system suitability. Parameter settings for this study were initially based on <467> for sample preparations and GC parameters and an Agilent (Santa Clara, California) technical publication (8) for MS parameters. Scan mode spectra were selected based on quantifying and qualifying ions, and combinations of one or two qualifying ions were used to ensure that the proper residual solvent was identified. After it was identified, typically the most abundant ion was selected for quantitation. When spectra did not have unique spectral patterns, chromatographic separation was sufficient for identification.

This article does not address known problems in sample preparation, but presents interim progress in detection that may contribute to a revision of <467>.


Static Headspace GC–MS Detection of Residual Solvents—A Possible Simultaneous Identification and Quantitation Method
Volatile Extraction Market
Using Automated Cold-On-Column Injection for the Analysis of Explosive Residues by Negative Chemical Ionization GC-MS
Gas Chromatography-Time-of-Flight Mass Spectrometry in Food Analysis
High-Resolution GC-MS as a Viable Solution for Conducting Environmental Analyses
blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch | Ronald E. Majors: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: Standardized Testing of Silica as a Base Material for Difficult Bonded-Phase Preparative Applications

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: Seven Common Faux Pas in Modern HPLC

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Retention Time Variation Is Normal?

More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: LCGC North America,
Click here