Q&A Gases: Part 2 - - Chromatography Online
Q&A Gases: Part 2


LCGC Europe
Volume 26, Issue 1, pp. 34-40

This month we complete a list of questions about gases that began in a previous instalment (1).

The range of questions about gases in gas chromatography (GC) is wide and complex. Even barring direct questions about hydrogen as a carrier gas, my attempts to address at least most of the core questions has already taken two instalments of GC Connections. I hope this month's additional topics will suffice, but I also encourage readers to correspond with any other questions they may have on these or any other GC-related subjects.

Clarification on Sealing Tape

More than one reader commented that in the previous column (1), no explicit precaution was given regarding the use of polyfluorocarbon tape or sealant with swaged fittings. The use of any tape or sealant is clearly proscribed for swaged fittings as well as for cylinder compression fittings. A better statement would be that polyfluorocarbon tape specifically sold for high-purity gas distribution is the only type of tube or fitting sealant that can be used for gas chromatography, and the only place that it is appropriate for use is on pipe-thread fittings where it functions as a sealant and prevents gas from flowing around the pipe threads themselves. This applies not only to - or ⅛-in. (6- or 3-mm) tubing and associated fittings but also to larger sizes such as sometimes found in manifolded gas distribution systems (see below for more). Thanks to those readers for helping to clarify this issue.

More Questions That Should Be Asked Frequently

Here are the remaining questions on my list regarding gases and gas delivery for GC. As before, these questions do not address anything about the gases after they reach the GC system. Therein lie even more questions that also should be asked frequently.


Table 1: Filter and gas selection matrix.
What Types of Filters Should Gas Chromatographers Use?: Recommendations for filter types vary for different instrument manufacturers as well as for different consumables suppliers and producers. Filter requirements are driven by the types of injection, column and detection technology in use. In mixed situations, higher purity requirements override less stringent ones, so always use a filtering scheme that is appropriate for the component that requires the highest purity level. Table 1 is an expanded version of a table included in the previous instalment (1) that gives a filter and gas selection matrix for commonly used inlets, columns and detectors. Be sure to choose filters that are rated for the desired gas purity level and devices in use.

For example, if using a split–splitless inlet with a wide-bore porous-layer open-tubular (PLOT) column and thermal conductivity detection (TCD), the TCD makeup gas — which has a less strict purity requirement — would be subsumed to the carrier gas because of its higher purity specification. A separate makeup gas supply is not required with TCD; makeup gas can be pulled from the higher-purity carrier-gas supply. An electron-capture detector with a split–splitless inlet, capillary columns, and hydrogen carrier gas would require at least 99.9995% carrier gas and multiple high-purity carrier-gas filters, plus a separate supply of 99.9995% impurity-free nitrogen or argon plus 5% methane ionization gas with its own set of high-purity gas filters.

In general, most chromatographers will simply install the highest level of filtration and use the highest gas purities that apply to all in-use or anticipated combinations of inlet, column and detector on a particular instrument population.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Sample Prep Perspectives | Ronald E. Majors: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments.
LATEST: UV Detector Problems


Perspectives in Modern HPLC | Michael W. Dong: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: Superficially Porous Particles: Perspectives, Practices, and Trends


MS — The Practical Art | Kate Yu: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis


LC Troubleshooting | John Dolan: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: Problems with Large-Molecule Separations


More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC Europe,
Click here