Green Chemistry Perspectives on Analytical Extractions - - Chromatography Online
Green Chemistry Perspectives on Analytical Extractions

Special Issues
pp. 22 to 25

The growing interest in green chemistry requires fresh perspectives on analytical extractions. Reduced solvent consumption, alternative safer solvents, and reasonable energy demands must be balanced with traditional analytical considerations such as extraction yield and selectively. This article introduces some of the concepts behind green chemistry, and discusses green solvent selection and extraction techniques. An overview of alternatives to conventional solvents, new green solvents, ionic liquids, and other solvent options are also described.

The history of modern analytical extractions mirrors the development of green chemistry. For nearly a century Soxhlet extraction, combined with shake-flask methods, was the standard method for the isolation of analytes from solid samples, while multiple liquid–liquid extractions (LLEs) using separatory funnels was the method of choice for liquid samples. In the mid-1980s, new forms of analytical extractions were developed and popularized — such as supercritical fluid extraction (SFE), pressurized-fluid extraction (PFE), solid-phase extraction (SPE), solid-phase microextraction (SPME), microwave-assisted extraction (MAE), single-drop microextraction (SDME), and ultrasonic extraction. These new extraction techniques had benefits such as faster times, lower cost for each extraction, improved yield and reproducibility, and lower solvent volumes. Lower solvent volumes provide significant environmental advantages. Extraction solvents generally provide the bulk of the waste encountered in any analytical method and often have health and safety concerns, such as toxicity or flammability.

Table 1: Principles of green chemistry. Adapted from reference (1).
In parallel with these developments, the concept of green chemistry emerged. This culminated in the statement of the 12 principles of green chemistry in 1998, which are shown in Table 1 (1). The goals of green chemistry are to address environmental, health, and safety concerns when planning a chemical process rather than after it has been performed. Despite the fact that modern extraction technologies and green chemistry are contemporaries, the two fields have advanced independently of each other. The green advantages of newer extraction methods are widely promoted, but they are rarely placed in the context of the green chemistry principles.

Green chemistry in the chromatography laboratory was recently reviewed and this article described ways to save on solvent consumption, alternatives to using acetonitrile in liquid chromatography (LC), and how to assess the "greenness" of analytical methods (2). These topics will not be repeated in this review.


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: Special Issues,
Click here