Enantiomer and Topoisomer Separation of Acidic Compounds on Anion-Exchanger Chiral Stationary Phases by HPLC and SFC - - Chromatography Online
Enantiomer and Topoisomer Separation of Acidic Compounds on Anion-Exchanger Chiral Stationary Phases by HPLC and SFC

LCGC Europe
Volume 25, Issue 11, pp. 600-611

Quinine- and quinidine-derived anion-exchanger chiral stationary phases are versatile tools for enantiomer separation of acidic compounds in high performance liquid chromatography (HPLC). This article demonstrates their recognition ability in specific HPLC applications, involving enantiomer resolution and plasmid topoisomer separation. The extension of their applications from HPLC to supercritical fluid chromatography (SFC) was also investigated, with the aim of assessing the influence of a series of parameters and gaining insight into the general approaches for SFC method development and optimization.

Quinine (QN) and quinidine (QD) are alkaloids of the Cinchona family with anti-malarial properties that have a long tradition in stereoselective methods as auxiliaries (as a base for fractionated crystallization of chiral acids), as chiral catalysts and as chiral selectors for enantioselective separations. Based on the investigations of Lindner and his fellow workers, the chiral recognition ability of various derivatives has been explored recently for the resolution of acidic enantiomers. Most notably, it was found that a carbamoyl modification of the secondary hydroxyl group at C9 of the alkaloid significantly enhanced the enantiorecognition capabilities of the resulting chiral selector (1-3). The tert-butyl carbamates of QN and QD immobilized on spherical silica gel (Figure 1) turned out to be the most versatile compromise of structure variations. When used with weakly acidic mobile phases — usually pH 4–7 — they act as weak anion exchanger chiral stationary phases (CSPs) to provide specific enantioselectivity for acidic compounds.

The enantiomer recognition mechanism is based on ionic interaction between the protonated tertiary nitrogen of the quinuclidine moiety of the chiral selector and the anionic analytes. Such an ion pairing is accompanied by additional intermolecular interactions including hydrogen bonding, dipoledipole, p–p and hydrophobic, as well as steric interactions (2–4).

These chiral columns have been exhaustively investigated in HPLC with aqueous and non-aqueous polar organic mobile phases and show remarkable performance in enantiomer resolution of a wide variety of acidic compounds (3–10) and so investigation of these columns for enantiomer separation by SFC is a current area of research.

Figure 1: The chiral stationary phases.
In this article we demonstrate that the application of these columns can be extended to different practical applications in LC and SFC for enantiomer resolution of acidic compounds and for separation of certain specific compounds like topoisomers of circular plasmid DNA.


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Sample Prep Perspectives | Ronald E. Majors:

LCGC Columnist Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments in existing technology lines.

LATEST: The Role of Selectivity in Extractions: A Case Study

History of Chromatography | Industry Veterans:

With each installment of this column, a different industry veteran covers an aspect of the evolution and continued development of the science of chromatography, from its birth to its eventual growth into the high-powered industry we see today.

LATEST: Georges Guiochon: Separation Science Innovator

MS — The Practical Art| Kate Yu:
Kate Yu is the editor of 'MS-The Practical Art' bringing her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers.

LATEST: Mass Spectrometry for Natural Products Research: Challenges, Pitfalls, and Opportunities

LC Troubleshooting | John Dolan:

LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan, Vice President of LC Resources and world renowned expert on HPLC, is able to highlight common problems and provide remedies for them.

LATEST: LC Method Scaling, Part I: Isocratic Separations

More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: LCGC Europe,
Click here