Capillary Ion Chromatography Gains Momentum - - Chromatography Online
Capillary Ion Chromatography Gains Momentum

The Column
Volume 12, Issue 10, pp. 2–8

Since the introduction of ion chromatography over 30 years ago, there has been much progress in the development of innovative IC systems. Capillary IC was introduced to provide a technique that is always ready and provides excellent eluent and waste economy. The first commercial capillary IC systems became available in 2010, but uptake of the technique has been slow, even though it has many benefits. This article assesses these benefits and presents selected application areas where capillary IC is proving especially useful.

There are a number of benefits to capillary ion chromatography (IC):

Photo Credit: Pete Gardner/Getty Images
Continuous Operation: A capillary IC system is always ready to run samples. Column size, injection volumes, and flow rates are scaled down by a factor of 10 to 100 in capillary IC compared to conventional flow systems, thereby improving system stability and reducing the need for recalibration. A continuous mode of operation is possible because capillary IC systems only consume 15 mL of water per day or 5.2 L a year.

Less Waste: The waste produced in a capillary IC system is minimized, thereby reducing disposal costs. When operated as a "reagent-free" ion chromatography (RFIC) system, the eluent generation cartridge can last for 18 months of continuous operation. When using eluent generation, only water flows through the pumps, extending the life of seals and decreasing the cost of maintenance compared to other mobile phases. Advances in eluent generation and electrolytic suppression technologies enable a wider variety of applications and increased productivity. RFIC systems combine automated eluent generation and electrolytically regenerated suppression technology to create the required eluents and regenerants used for IC applications. Laboratories using RFIC systems spend less time on equilibration, calibration, method verification, troubleshooting, and consistency checks because the technology minimizes unintentional variations in the preparation of eluents and regenerants.

Lower Sample Volume: Capillary IC operated as a RFIC system can provide trace-level determinations using sample volumes of up to 250 ÁL. One approach is to perform a large-volume direct injection that is suitable for samples with low levels of matrix ions. A 10 ÁL injection onto a 0.4-mm i.d. column in a capillary IC system is equivalent to a 1000 ÁL injection onto a 4-mm i.d. column. An alternative approach is to load a 250 ÁL sample onto a capillary concentrator rather than loading a 25-mL sample onto a 4-mm concentrator. Capillary IC can offer significant benefits in trace analysis where sample volumes might be limited.

Higher Resolution: Capillary IC can be performed under high pressure at up to 5000 psi when configured as an RFIC system. These high-pressure capillary IC systems can support higher back pressure 4-Ám particle ion exchange columns. The advantage of using a 4-Ám particle ion exchange column is improved chromatographic efficiency because of the smaller particle size. A 150-mm length column can be used at higher flow rates to increase productivity; a 250-mm length column can provide higher resolution separations of complex sample matrices.


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: The Column,
Click here