Modern Mass Spectrometry in Protein Analysis - - Chromatography Online
Modern Mass Spectrometry in Protein Analysis

The Column
Volume 10, Issue 15, pp. 18–19

An excerpt from LCGC's e-learning tutorial on MS in protein analysis at

Photo Credit: LAGUNA DESIGN/Getty Images
It has been 25 years since electrospray ionization was shown to lead to multiple charging of peptides and proteins, effectively bringing these large biomolecules into the measurable range of the common mass analyzing devices.

In modern times, mass spectrometry (MS) is widely used in the characterization of proteins at the intact (native) and peptide levels, as well as in the analysis of enzymatically generated protein fragments, in conjunction with an expanding range of compatible chromatographic separation techniques.

Electrospray ionization of intact proteins generates a charged envelope of peaks corresponding to differing degrees of ionization that can readily be converted to the molecular mass using a mathematical algorithm. Typically, average mass is calculated; however, high mass accuracy time-of-flight and Fourier transform instruments allow isotopic resolution, which can be important in the study of protein fragments to determine sequence and post-translational modifications (PTMs). This has become known as "top-down" proteomics, because the measurements are made on the intact proteins instead of enzymatically digested proteins. These methods require special ionization techniques such as electron-capture dissociation (ECD) or electron-transfer dissociation (ETD), which typically maintain the labile modifications (glycosolation for example) on the protein backbone.


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: The Column,
Click here