Rapid UHPLC Method Development for Omeprazole Analysis in a Quality-by-Design Framework and Transfer to HPLC Using Chromatographic Modelling - - Chromatography Online
Rapid UHPLC Method Development for Omeprazole Analysis in a Quality-by-Design Framework and Transfer to HPLC Using Chromatographic Modelling

LCGC Europe
Volume 27, Issue 9, pp. 466–478

The aim of this study was to apply quality-by-design principles to build in a more scientific and risk-based multifactorial strategy in the development of an ultrahigh-pressure liquid chromatography (UHPLC) method for omeprazole and its related impurities.

The quality-by-design concept was outlined years ago by Joseph M. Juran (1) and is used in many industries to improve the quality of products and services simply by planning quality from the beginning. Since the US Food and Drug Administration (FDA) announced its "Pharmaceutical Current Good Manufacturing Practices (cGMPs) for the 21st Century" initiative (2) in 2002, a quality-by-design approach has also been sought in the pharmaceutical industry.

Through the International Conference on Harmonization (ICH), this concept resulted in ICH guideline Q8(R2) in which quality-by-design is defined as "a systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management" (3).

Photo Credit: Image Source/Getty Images
Although ICH guideline Q8(R2) doesn't explicitly take analytical method development into account and no other regulatory guideline has been issued, the quality-by-design concept can be extended to a systematic approach that includes the definition of the methods goal, risk assessment, design of experiments, developing a design space, verification of the design space, implementing a control strategy, and continual improvement to increase method robustness and knowledge (4). The novelty and opportunity in this approach is that working within the design space of a specific method can be seen as an adjustment and not a postapproval change (4).

A systematic approach should replace the still common "screening", also known as a trial-and-error approach, in which one factor at a time (OFAT) is varied until the best method is found. The OFAT approach is time-consuming and often results in a nonrobust method because interactions between factors are not considered.

Today, systematic concepts use experimental design plans as an efficient and fast tool for method development. In a full or fractional factorial design, a couple of experiments are carried out in which one or more factors are changed at the same time. By using statistical software tools (for example, Design Expert from Stat-Ease, Inc.), the effect of each factor on the separation can be calculated and the data can be used to find the optimum separation (4). In our laboratory, this concept is used when the development of nonchromatographic methods is necessary.

However, the easiest and fastest way of developing a liquid chromatographic method is by using chromatography modelling, especially in combination with ultrahigh-pressure liquid chromatography (UHPLC) technology. Based on a small number of experiments, these software applications can predict the movement of peaks when parameters such as eluent composition or pH, flow rate, column temperature, column dimensions, and particle size are changed (5–11). When necessary, the developed method can be transferred (back) to high performance liquid chromatography (HPLC).


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: LCGC Europe,
Click here