Update in the Technology and Applications of Chiral Stationary Phases - - Chromatography Online
Update in the Technology and Applications of Chiral Stationary Phases


Special Issues


An ever-increasing need for chiral separations has led to a more generic approach for screening a variety of chiral stationary phases. These new screening methodologies have been supported by new instrument development, new chiral product performance, and a new level of user knowledge. Supercritical fluid chromatography has continued to grow, supported by published applications from the separations industry. An expanded field of polysaccharide phases has been made available from a variety of sources with some unique variants of the most common cellulose and amylose derivatives.

In 2006, at the time of the last review (1), 80% of small molecule drugs approved by the FDA were chiral and 75% were sold as single enantiomers (2). Looking forward, it has been estimated that 200 chiral compounds will enter the development process each year. A variety of chiral technologies have expanded to meet this challenge, including asymmetric synthesis involving chiral auxiliaries, salt resolutions, chemical and biocatalysis, and chromatographic separations. Throughout these processes, versatile analytical methodologies are required. Because speed is essential, due to time and cost pressures and the growing number of projects, generic screening methods have become the preferred course of action. Generic methods are typically chromatographic separation methods employing chiral stationary phases (CSPs) that have broad selectivity capabilities. The pressure of developing an increased number of analytical methods ironically has led to a reduction in the number of suitable stationary phases tested for a particular separation and, in addition, a new view that preparative separations are in reality the best course of action for obtaining pure enantiomers instead of a method of "last resort."



Also during 2006, a major shift already was taking place in the approach to chiral separations. Blind screening of a number of chiral stationary phases was seen as the best approach to getting selectivity data in the most efficient manner. High performance liquid chromatography (HPLC) systems designed to screen from six to as many as 12 columns (PDR-Chiral, Lake Park, Florida) were infiltrating the market with a configuration of eight being the most common. Sepiatec (Berlin, Germany) and Eksigent (Dublin, California) have taken this methodology a step further in offering parallel testing of eight CSPs. In the interim, many consolidations have taken place within the pharmaceutical industry and within the chiral separations businesses, creating an even stronger concentration of effort toward greater efficiency in the separation process.

As the focus on chirality has brought the chiral separation process closer to the drug discovery platform, the need for chiral analysis increased and the requirements for even shorter method development times emerged. To respond to this growing need, the focus in HPLC centered on shorter columns and smaller particles using higher pressures and temperatures in the hope of achieving faster, more efficient analyses. Many of these approaches were not directly applicable to all chiral stationary phases. Certain of the CSPs require longer columns to obtain the necessary plate height for resolution while for other CSPs, higher temperatures adversely affected column stability. Some compromises had to be made. Temperature as an operating parameter has been studied extensively (3) especially for the CHIROBIOTIC macrocyclics glycopeptides phases (4,5). An alternative approach better suited to chiral separations was demonstrated by operating a CSP in a different mode. In liquid-phase methodology, two basic modes of operation have developed; HPLC and sub- and supercritical fluid chromatography (SFC). SFC utilizing super- and subcritical carbon dioxide modified with methanol or other solvents is seen as a potential major contributor to resolving many of the method development issues, especially relating to speed but also to environmental issues, both of major concern to the pharmaceutical and chemical industries. In addition, compared with HPLC, SFC also is considered to be a more "green" technique with limited amounts of organic solvent content in a carbon dioxide environment that also helps to make solute collection a cleaner process because the majority of the solvent (that is, carbon dioxide) merely evaporates to a gaseous state.

The limiting factor for SFC methodology centers on the polarity of the molecule. As the polarity of the molecule increases additional percentages of additives are required to promote elution and the process slows back down to conventional chromatography. Fortunately, the polarity of the majority of current molecules falls within the suitable range of normal phase chromatography and, therefore, of SFC.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration


Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies


MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis


LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase


More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: Special Issues,
Click here