Finding the Best Separation for Enantiomeric Mixtures - - Chromatography Online
Finding the Best Separation for Enantiomeric Mixtures


LCGC North America
Volume 28, Issue 9



The separation of enantiomers by chromatography is a well-established technique in chemical and pharmaceutical research. There are currently a very large number of columns commercially available and, to meet time constraints, an efficient screening strategy for the selection of conditions with a high success rate is required. A study of screening procedures has been performed which demonstrated that a relatively small set of polysaccharide-derived columns can be used on a routine basis in different chromatographic modes to meet modern analytical needs.

The tools for analytical resolution of enantiomers have evolved in recent years with advances in chromatographic techniques. As in any analytical method, the separation of enantiomeric pairs should achieve a rapid and complete resolution of the two chromatographic peaks and must also be reproducible and robust. Ideally it should also separate sample impurities, reach a low LOD/LOQ (limit of detection/limit of quantification) and show an appropriate elution order. Moreover, the ideal chromatographic conditions should ensure the stability of the sample during the analysis in addition to the compatibility of the sample medium with the mobile phase and the column.

Such a list of conditions for the resolution of challenging samples requires decisions concerning both the chiral stationary phases and the chromatographic modes employed. Our goal to find the best chromatographic method must be tempered with the use of a minimum number of chiral stationary phases (CSPs), thus, an efficient screening strategy is essential.


KEY POINTS
The resolution of racemic mixtures by chromatography has reached maturity in the last decade (1,2). Although most racemates and diastereomeric mixtures can be separated at analytical level, the challenge is to achieve complete resolution of the components while reaching high-speed, preserving efficiency and with limited screening efforts.


Figure 1: Decision tree in method development in the resolution of enantiomers by chromatography.
Resolution of enantiomers by chromatography is predominantly performed by using chiral stationary phases. A number of chiral selectors are available commercially at present, such as proteins, polysaccharides, antibiotics, brush-type molecules, ionic exchangers, crown ethers, cyclodextrins and multiple polymers (1,2). One of the most widely used groups of CSPs is the group consisting of silica-based polysaccharide-derived chiral supports. They can operate in different modes and, therefore, a preliminary decision tree to devise the screening strategy is substantial when a new sample is received (see Figure 1).

The starting point is to decide which technology is to be used with a specific type of selector. Both liquid chromatography (LC) and supercritical fluid chromatography (SFC) are powerful tools that have been used successfully. The decision, therefore, is typically based upon equipment availability and suitability for the scale and type of molecule. Although SFC lacked sensitivity in its early development, recent advances have resulted in the efficient use of SFC with mass spectrometry (MS) detectors.

In LC method development, one may use organic solvent mixtures or water-compatible mobile phases. Normal-phase applications have historically been more widely used for the separation of enantiomers. However, the reversed-phase separations, together with polar organic modes, should be seriously considered when samples are in aqueous media to exploit the LC–MS compatibility of these mobile phase systems.

The present article aims to cover the practical approaches applied in our laboratories to screen analytical samples. Based upon extensive experimental work, we will focus on the results achieved with a range of 3- and 5-μm silica-based phases, containing amylose and cellulose derivatives as chiral selectors in a coated or immobilized fashion. Strategies for efficient HPLC method development with these CSPs in normal phase, polar mode and reversed phase conditions, as well as SFC, will be addressed. The different modes will be reviewed with the preferred primary screening, as well as the potential alternatives for higher peak efficiency (switch to smaller particles), fast analysis and unique selectivities with new selectors.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Sample Prep Perspectives | Ronald E. Majors: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments.
LATEST: UV Detector Problems


Perspectives in Modern HPLC | Michael W. Dong: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: Superficially Porous Particles: Perspectives, Practices, and Trends


MS — The Practical Art | Kate Yu: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis


LC Troubleshooting | John Dolan: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: Problems with Large-Molecule Separations


More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC North America,
Click here