Field-Flow Fractionation Coupled with ICP-MS for the Analysis of Engineered Nanoparticles in Environmental Samples - - Chromatography Online
Field-Flow Fractionation Coupled with ICP-MS for the Analysis of Engineered Nanoparticles in Environmental Samples


LCGC Europe
Volume 25, Issue 12, pp. 652-665

Analytical Methodologies

The measurement and characterization of nanoparticles (nanometrology) is therefore critical to all aspects of nanotechnology. In the field of environmental health and safety (EHS), it has become clear that "complete" characterization of nanomaterials is critical to interpreting the results of toxicological, human health and environmental fate studies. Metal-containing ENPs form a particularly significant class, as their use in consumer products and industrial applications make them the fastest growing category of nanoparticles. Several life cycle assessments conclude that the predicted environmental concentrations (PEC) of some metal-bearing nanoparticles could exceed the predicted no effect concentration (PNEC), suggesting that ENPs can enter aquatic systems at potentially harmful concentrations. However, in most cases, these levels are typically at the part-per-trillion level.

Many analytical techniques are available for nanometrology, only some of which can be successfully applied to nano-EHS studies (3). These methods differ in part by the properties measured: average size, size distribution, surface characteristics, shape and chemical composition. Methods for assessing particle concentration and particle size distributions include electron microscopy, chromatography, centrifugation, laser-light scattering, ultrafiltration and spectroscopy. Difficulties generally arise because of a lack of sensitivity for characterizing and quantifying particles at environmentally relevant concentrations (low micrograms per litre). Furthermore, the lack of specificity of the technique is problematic for complex environmental matrices that may contain natural nanoparticles with polydisperse particle distributions, as well as heterogeneous compositions.

Electron microscopy and dynamic light scattering (DLS) are the most commonly applied methods, but they each have advantages and disadvantages. Electron microscopy gives the most direct information on the size distribution and shapes of the individual nanoparticles. However, sample preparation steps such as drying or exposure to vacuum can induce an agglomeration (clustering) of the particles, thus making it difficult to define their size in the original media. In addition, organic coatings are not visible without staining, which can lead to errors in the measurement of the particle diameter.

DLS measures the diameter of the particle while in motion (hydrodynamic diameter), and thus provides sizing of organically coated nanoparticles. Limitations of DLS include poor sensitivity at dilute concentrations, nonselective material detection, inability to distinguish mixtures in complex matrices, and difficulty in resolving the dominant size in polydisperse samples. The presence of a small number of aggregates can skew the effective diameter toward a larger particle size distribution. However, despite its limitations, DLS remains a rapid technique to quickly determine average particle hydrodynamic diameter for a wide range of particle types.

An emerging technique called single-particle inductively coupled plasma–mass spectrometry (SP-ICP–MS) has been developed for detecting and sizing metallic nanoparticles at environmentally relevant (nanograms per litre) concentrations. Although this method is still in its infancy, it has shown a great deal of promise in several applications, including determining concentrations of silver nanoparticles in complex matrices such as wastewater effluent (4). The method involves introducing nanoparticle-containing samples, at very dilute concentration, into the ICP-MS system and collecting time-resolved data. Integration times on the order of 10 ms are used to detect individual particles as pulses of ions after they are atomized by the plasma. Observed pulse number is related to the nanoparticle concentration by the nebulization efficiency and the total number of nanoparticles in the sample, and the mass, and thus the size of the nanoparticle, is related to the pulse intensity (5). However, it should be emphasized that for this approach to work effectively at low concentrations, the speed of data acquisition and the response time of the ICP-MS detector must be fast enough to capture the time-resolved nanoparticle pulses, which typically last only a few milliseconds.

Field-flow fractionation (FFF) analysis, the sizing technique highlighted in this article, is a powerful tool for sizing and separating ENPs. FFF, incorporating UV-absorbance detection, is generally limited to particle concentrations in the parts-per-million (milligramsperlitre) range and lacks particle specificity. Furthermore, UV response is not a direct measure of particle mass concentration, but rather depends on particle size, shape and optical characteristics. However, coupling FFF with a sensitive and selective multielement technique such as ICP-MS lowers detection capabilities by approximately three orders of magnitude, to the partsper-billion (microgramsper-litre) range, and provides direct information about particle mass concentration and composition (6). For this reason, it is clear that because of its elemental specificity, excellent resolution and low detection limit, ICPMS is perhaps becoming the most promising detection method for nano-EHS studies.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:




 

LCGC COLUMNISTS 2014

Sample Prep Perspectives | Ronald E. Majors:

LCGC Columnist Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments in existing technology lines.

LATEST: The Role of Selectivity in Extractions: A Case Study

History of Chromatography | Industry Veterans:

With each installment of this column, a different industry veteran covers an aspect of the evolution and continued development of the science of chromatography, from its birth to its eventual growth into the high-powered industry we see today.

LATEST: Georges Guiochon: Separation Science Innovator

MS — The Practical Art| Kate Yu:
Kate Yu is the editor of 'MS-The Practical Art' bringing her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers.

LATEST: Mass Spectrometry for Natural Products Research: Challenges, Pitfalls, and Opportunities


LC Troubleshooting | John Dolan:

LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan, Vice President of LC Resources and world renowned expert on HPLC, is able to highlight common problems and provide remedies for them.

LATEST: LC Method Scaling, Part I: Isocratic Separations

More LCGC Chromatography-Related Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>


Source: LCGC Europe,
Click here