Mass Spectrometry

Oct 01, 2017
Special Issues
The disinfectants commonly used to treat public drinking water can react with naturally occurring organic and inorganic matter in the source water to form disinfection byproducts such as haloacetic acids. Here, we describe the use of two-dimensional matrix-elimination ion chromatography (MEIC) for haloacetic acid analysis. This method minimizes the impact of matrix ions.
Oct 01, 2017
Special Issues
Wastewater analysis has become an established approach for retrieving additional epidemiological information about the use of illicit drugs, alcohol, and tobacco at the population level. Here, we present an overview of the recent analytical frameworks and workflows for target and suspect analyses using low- and high-resolution mass spectrometry and discuss the latest advances in wastewater-based epidemiology (WBE).
Oct 01, 2017
Special Issues
Since glycans are responsible for bioactivity, solubility, immunogenicity, and clearance rate from circulation, it is vital to have a detailed map of glycans in therapeutic glycoproteins. Detailed glycoprotein structural analysis must be able to identify the peptide sequence where the glycans are attached as well as the structure of the glycan portion, including oligosaccharide sequence and glycosyl linkages. This article details methods for mass spectrometry experiments on both released glycans (“glycomics”), as well as on intact glycopeptides (“glycoproteomics”) using electron transfer dissociation, high-energy collision dissociation, and collision-induced dissociation fragmentation pathways, which are needed to fully elucidate the structure of glycoproteins.
Oct 01, 2017
Special Issues
Under a suitable thermal oxidation regime, vegetable oils yield a mixture of volatile and semivolatile organics that exhibit very high antimicrobial activities against a variety of microbial species. Volatile and semivolatile products were characterized with GC–MS using electron ionization and chemical ionization. The thermal oxidation of vegetable oils resulted in the formation of an array of short and medium-chain acids, aldehydes, and ketones that act synergistically to yield a potent antimicrobial disinfectant.
Aug 01, 2017
LCGC North America
Leading separation scientists share their perspectives on current challenges in separation science and where the field is heading. Click the title to view the full article.
Jul 01, 2017
LCGC North America
A model set of analytes and selected applications are used to demonstrate the effects that buffers can have on the selectivity of a separation and the sensitivity of a reversed-phase analysis when using MS detection.
May 01, 2017
Special Issues
In this study, a simple method was used for extraction and concentration of trace organic compounds in water, followed by injection using a coiled wire filament and GC–MS analysis. Common semivolatile organic compound contaminants at low parts-per-billion levels were detected in less than 10 min.
May 01, 2017
Special Issues
With computational chemistry, chemists can now study chemical phenomena by performing computationally intense calculations on computers rather than examining reactions and compounds experimentally. This is especially attractive when the laboratory experiments are time consuming, costly, dangerous, or difficult. Modern computational chemistry tools are capable of determining molecular structures, molecular spectra, and energetics, and of elucidating reaction pathways and chemical reaction products.
Mar 02, 2017
Sponsored Content
In this Tech Note, CESI-MS was used to characterize and compare a marketed reference mAb with biosimilar candidates. A single injection of each digested mAb provided PTM hot-spot detection (deamidation, Asp isomerisation, etc), glycosylation site mapping and 100% Sequence coverage. This allowed a rapid assessment of candidate biosimilars for continued development.
Mar 01, 2017
Special Issues
The isotopic profile of a material refers to the ratios of the stable isotopes of elements contained within, such as 2H/1H, 13C/12C, and 18O/16O. Biological, chemical, and physical processes cause variations in the ratios of stable isotopes; analysis of a material for its distinctive isotopic signature can thus be used to reveal information about its history. Isotope ratio mass spectrometry (IRMS) is a technique used to measure the relative abundance of isotopes in materials. Forensic investigators have used IRMS to measure a variety of materials, such as drugs, explosives, food, and human remains. In a recent web seminar, Lesley Chesson, the president of IsoForensics, Inc., explained how IRMS works and discussed the use of IRMS in forensic science, illustrating her discussion with several case examples.
lorem ipsum