Special Issues-05-01-2018

There have been exciting recent advances in ICP-MS instrumentation, such as the development of magnetic sector ICP-MS, multicollector ICP-MS, time-of-flight ICP-MS, and triple-quadrupole ICP-MS, as well as developments in the coupling of laser ablation (LA) and laser-induced breakdown spectroscopy (LIBS) to ICP-MS. This article surveys these developments and looks to the future.

Matrix-assisted laser desorption–ionization (MALDI) imaging mass spectrometry allows direct, in situ, label-free measurement of proteins, peptides, lipids, small-molecule drugs and their metabolites, and other chemicals in tissues. In a range of applications, the unique information generated by MALDI imaging can make a significant contribution to understanding factors such as molecular and metabolic mechanisms and the transport and localization of compounds or metabolites with human, animal, or plant species.

Recent advances have significantly improved the performance of capillary electrophoresis–mass spectrometry (CE–MS) for the profiling of polar and charged metabolites in volume-restricted or mass-limited biological samples. Here, those advances are discussed, and attention is also devoted to various technical aspects that still need to be addressed.

For lipid-containing food products like mayonnaise, determining nonvolatile lipid oxidation products, the precursor compounds for rancidity, makes it possible to predict product shelf life at an earlier stage in product development. A method based on normal-phase liquid chromatography with atmospheric pressure photoionization-mass spectrometry (LC–APPI-MS) was developed for this purpose.

Click the title above to open the May 2018 issue of Current Trends in Mass Spectrometry, Volume 16, Number 2, in an interactive PDF format.