Special Issues-10-03-2017

Click the title above to open the LCGC Europe October 2017 supplement, Vol 30, No s10, in an interactive PDF format.

An automated method for determination of water in liquid sweeteners was developed using headspace gas chromatography (GC) and ionic liquid-based capillary GC columns. This method allowed for the rapid determination of water with minimal sample pretreatment. In addition to providing fast analysis time for the samples, the headspace GC method was found to be accurate and precise for the measurement of water in 16 liquid sweeteners. This method was shown to be widely applicable for sugar and sugar-free sweeteners and more accurate than Karl Fischer titration.

Speciation analysis of elemental contaminants in food and beverages has received a lot of attention in recent years. Recent regulations limit inorganic arsenic, taking into account that arsenic toxicity is dependent on the species present. Thus, the analysis procedure needs to be able to differentiate inorganic from organic arsenic forms. Liquid chromatography–inductively coupled plasma–mass spectrometry (LC–ICP-MS) is commonly used for the separation and detection of arsenic species, with the most widely used implementation based on ion exchange and characterized by relatively long run times. Testing of increasing sample numbers means that analysis speed becomes a focal point for potential improvements. We developed a method based on ion interaction chromatography, allowing a reduction in run times to

As a result of the rapid growth of the cannabis industry, many testing laboratories are looking for efficient, reliable, and cost-effective analytical methods to analyze chemical residues, such as pesticides, mycotoxins, solvent residues, terpenes, and heavy metals, as well as cannabinoid concentration in cannabis-infused edibles and beverages. In this article, QuEChERS (quick, easy, cheap, effective, rugged, and safe), a sample preparation technique widely adopted in the food testing industry, is introduced to the discipline of forensic testing as a viable method for the extraction of pesticides and cannabinoids in various complex sample matrices. The claimed amounts of cannabinoids versus the actual amounts are compared, as well as the pesticide residue levels in edible and beverage samples.

A method based on salting-out assisted liquid–liquid extraction for the analysis of α-dicarbonyls in wines was developed. The sample preparation procedure consists of a single step, involving the simultaneous extraction and derivatization of the analytes using an o-phenylenediamine–acetonitrile solution with sodium chloride as the salting-out agent. The obtained organic phase is collected and directly analyzed by liquid chromatography with spectrophotometric detection. The studied α-dicarbonyls were determined in eight wines. The developed methodology substantially reduces the complexity of the sample matrix, which is a very important aspect in routine analysis, especially to ensure long-lasting and reliable functioning of the chromatographic systems, while being a new and attractive methodology for the analysis of α-dicarbonyls.