A study in the Journal of Chromatography A used gas chromatography coupled to a time-of-flight mass spectrometer (GC–TOF-MS) to build an electron ionization mass spectra (EI-MS) database of more than 250 chemicals classified as either volatile or semi-volatile compounds (1). An additional, confirmatory layer of liquid chromatography–mass spectrometry (LC–MS) analysis was subsequently performed.
This report out of the Universidade de Santiago de Compostela, Spain, aimed to improve upon gas chromatography–mass spectrometry (GC–MS) detection considered the popular standard for analysis of “e-liquids” (1). The authors said both LC–MS and nuclear magnetic resonance (NMR) spectroscopy have been proposed for determination, but that only approximately 140 volatile compounds were previously identified.
Certain compounds produced by tobacco combustion in conventional cigarettes are not present in e-cigarettes, burnishing their reputation as a “safe” alternative (1). But the researchers list factors and symptoms indicating lung issues in consumers, from flavors that may cause oxidative stress to reactions between carbonyls and alcohols producing acetals, known respiratory irritants. Other addictive substances can be found in electronic smoking devices, such as nicotine and cannabinoids.
The research team sought a nontargeted approach, analyzing the e-liquids using two capillary columns with different polarities (1). The complementary LC–MS analysis was reserved for compounds identified at the highest of three levels of confidence, having satisfied three identification criteria. Study results showed while concentration ratios between delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) in e-liquids fell into a relatively narrow range (between 0.02% and 0.3%), the ratio of propylene glycol acetals to parent aldehydes ranged from 2%, for ethyl vanillin, to upwards of 80% for benzaldehyde.
(1) Cobo Golpe, M.; Ramil, M.; Rodríguez, I. Comprehensive Characterization of Volatile and Semi-Volatile Compounds in E-Liquids for Electronic Cigarette Using Gas Chromatography Accurate Mass Spectrometry. J. Chromatogr. A 2023, 1703, 464114. DOI: 10.1016/j.chroma.2023.464114
Mobile Phase Buffers in Liquid Chromatography: A Review of Essential Ideas
December 11th 2024In this installment of "LC Troubleshooting," Dwight Stoll discusses several essential principles related to when and why buffers are important, as well as practical factors, such as commonly used buffering agents, that are recommended for use with different types of detectors.
Identifying and Rectifying the Misuse of Retention Indices in GC
December 10th 2024LCGC International spoke to Phil Marriott and Humberto Bizzo about a recent paper they published identifying the incorrect use of retention indices in gas chromatography and how this problem can be rectified in practice.
Investigating the Influence of Packaging on the Volatile Profile of Oats
December 10th 2024In the testing of six different oat brands, headspace sorptive extraction and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC–TOF-MS) reveal how various packaging types can affect and alter the oats’ volatile profile, underscoring the potential impact of packaging on food quality.
The Chromatographic Society 2025 Martin and Jubilee Award Winners
December 6th 2024The Chromatographic Society (ChromSoc) has announced the winners of the Martin Medal and the Silver Jubilee Medal for 2025. Professor Bogusław Buszewski of Nicolaus Copernicus University in Torun, Poland, has been awarded the prestigious Martin Medal, and the 2025 Silver Jubilee Medal has been awarded to Elia Psillakis of the Technical University of Crete in Greece.