Researchers from Austria, Greece, and Italy conducted a study to analyze volatile organic compounds (VOCs) present in Irish and Scotch whiskys using solid-phase microextraction (SPME) Arrow with comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC–MS) to examine the organoleptic characteristics that influence the taste of spirits. The study sourced whisky samples from Vienna’s local market, and the results were published in the Journal of Chromatography A (1).
The researchers from Aristotle University of Thessaloniki in Thessaloniki, Greece, the University Campus Bio-Medico of Rome in Rome, Italy, the University of Messina in Messina, Italy, and Vienna University of Technology in Vienna, Austria, purchased samples of Irish whisky, single malt Scotch whisky, and blended Scotch whisky from a local market in Vienna. Among the most abundant aromatic VOCs in these and other whiskys are esters, alcohols, aldehydes, ketones, terpenes, and furanic and sulfur compounds.
An SPME Arrow method was used to extract VOCs from the headspace of whisky samples to concentrate the compounds of interest for subsequent analysis by GC×GC–MS. This combination offered a high degree of resolution in separating complex mixtures, allowing for the identification of various aromatic VOCs found in different whiskys, including esters, alcohols, ketones, terpenes, and sulfur compounds, according to the researchers.
The researchers concluded that the improved sensitivity and repeatability of the SPME Arrow method compared to traditional techniques offers significant promise for applications in quality control and authenticity assessment within the whisky industry to provide valuable insights into the composition and characteristics of distilled spirits.
(1) Ferracane, A.; Manousi, N.; Tranchida, P. Q.; et al. Exploring the Volatile Profile of Whiskey Samples Using Solid-Phase Microextraction Arrow and Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2022, 1676, 463241. DOI: 10.1016/j.chroma.2022.463241
Analytical Challenges in Measuring Migration from Food Contact Materials
November 2nd 2015Food contact materials contain low molecular weight additives and processing aids which can migrate into foods leading to trace levels of contamination. Food safety is ensured through regulations, comprising compositional controls and migration limits, which present a significant analytical challenge to the food industry to ensure compliance and demonstrate due diligence. Of the various analytical approaches, LC-MS/MS has proved to be an essential tool in monitoring migration of target compounds into foods, and more sophisticated approaches such as LC-high resolution MS (Orbitrap) are being increasingly used for untargeted analysis to monitor non-intentionally added substances. This podcast will provide an overview to this area, illustrated with various applications showing current approaches being employed.
Identifying and Rectifying the Misuse of Retention Indices in GC
December 10th 2024LCGC International spoke to Phil Marriott and Humberto Bizzo about a recent paper they published identifying the incorrect use of retention indices in gas chromatography and how this problem can be rectified in practice.
Investigating the Influence of Packaging on the Volatile Profile of Oats
December 10th 2024In the testing of six different oat brands, headspace sorptive extraction and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC–TOF-MS) reveal how various packaging types can affect and alter the oats’ volatile profile, underscoring the potential impact of packaging on food quality.
The Chromatographic Society 2025 Martin and Jubilee Award Winners
December 6th 2024The Chromatographic Society (ChromSoc) has announced the winners of the Martin Medal and the Silver Jubilee Medal for 2025. Professor Bogusław Buszewski of Nicolaus Copernicus University in Torun, Poland, has been awarded the prestigious Martin Medal, and the 2025 Silver Jubilee Medal has been awarded to Elia Psillakis of the Technical University of Crete in Greece.