A GC-MS procedure has been developed, optimized, and applied to characterization of oil binders in paintings.
A GC-MS procedure has been developed, optimized, and applied to characterization of oil binders in paintings. The procedure involves hydrolysis of lipids to fatty acids (FAs) and derivatization of FAs to fatty acid methyl esters (FAMEs). FAMEs are analyzed by temperature-programed GC followed by full-scan MS. The method provides a good repeatability of results and has been applied to the characterization of common plant oils used in paintings, commercial oil and tempera paints, model painting samples, and to samples taken from real paintings.
Inside the Laboratory: Using GC–MS to Analyze Bio-Oil Compositions in the Goldfarb Group
December 5th 2024In this edition of “Inside the Laboratory,” Jillian Goldfarb of Cornell University discusses her laboratory’s work with using gas chromatography–mass spectrometry (GC–MS) to characterize compounds present in biofuels.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
RAFA 2024 Highlights: Cutting-Edge Chromatography Techniques for Food Safety and Food Analysis
November 18th 2024An illuminating session focusing on progress in analytical techniques used in food analysis took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, The Czech Republic, including a talk on the analysis of 1000 toxins in 10 minutes.