Quality Control/Quality Assurance (QA/QC)

Latest News


As part of our ISC 2024 coverage, we recently interviewed Amarande Murisier of the University Hospital of Lausanne, Switzerland (CHUV) about her winning the Rising Stars of Separation Science Award for Biopharmaceutcal Analysis and her scientific background.

If your decision making relies on analytical chemistry, then you want to be confident that the measurements are an accurate representation of the matrix that is being analyzed, and that they are of “publication” quality. But how can you know for sure if the analytical laboratory that you’ve selected is producing reliable data?

MAM.jpg

As a result of the pharmaceutical cGMP for the 21st century and quality by design (QbD) initiatives championed by regulators, the biopharmaceutical industry has been looking for ways to introduce more automated and higher information content analyses into manufacturing, late-development, and quality control (QC). Mass spectrometry (MS-) based attribute monitoring assays have been proposed as key tools to provide the sensitivity, throughput, selectivity, and flexibility required for monitoring critical product and process attributes for biopharmaceutical production and release. Two analytical workflows, subunit multi-attribute monitoring (MAM) and peptide MAM, have emerged to dominate this discussion, and this article is intended to reflect on the active debates over the needs, challenges, and practical limitations for adopting MS-based attribute monitoring for late-development and QC.

Quantitative determination of the counterions associated with pharmaceutical salts is a mandatory requirement for quality control. While ion chromatography (IC) is the standard technique in most laboratories, capable of delivering excellent sensitivity, specificity and flexibility, there are other simpler and quicker analytical methodologies that may should be considered for this quality control application.

table 7.jpg

This fourth and last instalment in the “Separation Science in Drug Development” series provides an overview of modern practices of quality control in small-molecule drug development, including activities such as setting specifications, method validation and transfer, release and stability testing, and authoring chemistry, manufacturing, and controls (CMC) sections of regulatory filings.

meeting.jpg

Mass spectrometry (MS) is emerging as a critical tool in biopharmaceutical late stage development, manufacturing, and quality control (QC) environments. The rapid growth of biologics in development, the increasing demand for more robust analytical technologies to directly monitor the critical quality attributes (CQAs) of these new drugs, and longer term industry initiatives aimed at improving quality and productivity, such as quality by design (QbD) regulatory submissions and continuous manufacturing, are all fueling a greater need for mass monitoring with MS.

figure 1-1.jpg

A method specifically developed to measure the molar mass distribution (MMD) of polyolefins in a manufacturing plant laboratory has been developed. It is demonstrated that the total cycle time, including the sample dissolution step, can be reduced to around 30 min, well in line with the process control requirements.