Gas Chromatography (GC)

Latest News


Latest Videos


Shorts

3 Biggest Advances in GC and GC-MS
0:34
3 Biggest Advances in GC and GC-MS
9 days ago
by
Caroline Hroncich

More News

Trap focusing offers a powerful solution to common challenges in headspace (HS) and solid-phase microextraction–gas chromatography (SPME–GC) analysis of foodstuffs, including poor peak shape, limited sensitivity, and restricted dynamic range. This article explores how automated cryogen-free focusing, combined with multi-step enrichment and re-collection capabilities, can improve the detection and quantitation of both aroma-active compounds and trace-level contaminants. Using real-world examples, including flavor profiling of cola and garlic, and quantitation of ethylene oxide and epichlorohydrin in spices, enhanced chromatographic performance, greater confidence in compound identification, and lower detection limits than traditional workflows such as direct SPME or QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) are demonstrated.

Gas chromatography (GC) liners are offered in dozens of different configurations and internal diameters. The liner is designed with baffles or glass wool to best vaporize and mix the sample prior to transferring it to the head of the analytical column. Split liners have considerably more flow and are designed to handle high split ratios. For example, some liners have a glass dimple at the bottom to allow for higher flow rates (low pressure drop). Some split liners have an outer diameter of 6.3 mm while splitless liners have an outer diameter of 6.5 mm. It has been reported that these liners have been used interchangeably, which begs the question: Does the outer diameter matter?