Alain Beck | Authors

Articles

Optimizing MS-Compatible Mobile Phases for IEX Separation of Monoclonal Antibodies

The impact of ionic strength, buffer capacity, and pH-response on the retention behavior and peak shape of mAb species characterization is evaluated for IEX-MS. The aim of the present study was to understand the impact of ionic strength, buffer capacity, and pH-response on the retention behavior and peak shape of mAb species.

Optimization of MS-Compatible Mobile Phases for IEX Separation of Monoclonal Antibodies

Characterization of mAbs and related products requires the identification of chromatographic peaks with MS. However, the conventional salt- and pH-gradient elution techniques used in IEX are inherently incompatible with MS. Ammonium acetate- and ammonium carbonate-based mobile phase systems have been recently applied in IEX-MS, but the influence of the eluent composition on peak shape and retention has not been discussed nor studied systematically until now. The aim of the present study was to understand the impact of ionic strength, buffer capacity, and pH-response on the retention behaviour and peak shape of mAb species.

Advanced Antibody–Drug Conjugate Structural Characterization by Sheathless Capillary Electrophoresis–Tandem Mass Spectrometry Using Complementary Approaches

With this method, a single injection was sufficient to characterize the amino acid sequence with complete sequence coverage. In addition, glycosylation and drug-loaded peptides could be identified from MS/MS spectra. A drug-loaded peptide fragmentation mass spectra study yielded drug-specific fragments, which reinforced the confidence about the identifications. The results reveal the ability of the sheathless CZE–MS/MS method to characterize an ADC’s primary structure in a single experiment.