Chris English | Authors

Articles

Injecting Water onto a GC Column: Solving the Mystery of Poor Chromatography

Ethylene glycol is a particularly difficult compound to analyze because it is not easily extracted from water. Many environmental samples originate from water runoff at airports, where ethylene glycol is used as a de‑icing agent for airplanes during winter months. Hydraulic fracturing is a technique where pressurized fluid and sand or other solids (proppant) are used in gas drilling to allow gas extraction. Glycols are a common ingredient in most hydraulic fracturing fluid and play a key role in preventing emulsifications and stabilizing the solutions. The direct aqueous injection of ethylene glycol is challenging because it can be difficult to attain reproducibility and good peak shape. The large expansion volume of water can cause backflash, carryover can cause inconsistent results, and excess water can extinguish the flame ionization detection (FID) flame. This article describes a robust approach to analyze glycols in aqueous samples, which reduces downtime and maintains sensitivity.

Lowering Detection Limits for 1,4-Dioxane in Drinking Water Using Large Volume Injection in an Unmodified Splitless GC Inlet

Concurrent solvent recondensation–large volume splitless injection (CSR-LVSI), an alternative to programmed temperature vaporization (PTV), typically requires a special GC inlet. The technique described here uses an unmodified split/splitless inlet with CSR-LVSI to lower detection limits for the analysis of 1,4-dioxane in drinking water.