Articles by Valérie Pichon

Analyzing trace compounds from complex samples often requires purification and pre-concentration, and online coupling of solid-phase extraction (SPE) with liquid chromatography (LC) helps minimize analysis time and solvent/sample use. Monoliths with large macropores are ideal for this coupling due to their low back pressure and versatility in various formats.

Molecularly imprinted polymers (MIPs) are synthetic polymeric materials that mimic immunosorbents. They are widely used as sorbents for solid-phase extraction (SPE). The most common way to synthesize them is bulk polymerization because of its simplicity and versatility. This produces a hard monolith that has to be ground and sieved to obtain particles in the desired size range. However, the partial loss of the materials as fine dusts; the irregular shape of the particles produced and their wide size distribution, have led to a search for different polymerization methods to offset the drawbacks of the bulk polymerization process.

Molecularly imprinted polymers (MIPs) are synthetic polymeric materials that mimic immunosorbents. They are widely used as sorbents for solid-phase extraction (SPE). The most common way to synthesize them is bulk polymerization because of its simplicity and versatility. This produces a hard monolith that has to be ground and sieved to obtain particles in the desired size range. However, the partial loss of the materials as fine dusts; the irregular shape of the particles produced and their wide size distribution, have led to a search for different polymerization methods to offset the drawbacks of the bulk polymerization process.

MIPs are synthetic polymeric materials possessing specific cavities designed for a target molecule. The various parameters affecting extraction selectivity are discussed in the article and the potential of MIPs as selective sorbents reviewed.