Valérie Pichon

Articles by Valérie Pichon

Nathalie Delaunay, Audrey Combès, and Valérie Pichon © Images courtesy of authors.

Analyzing trace compounds from complex samples often requires purification and pre-concentration, and online coupling of solid-phase extraction (SPE) with liquid chromatography (LC) helps minimize analysis time and solvent/sample use. Monoliths with large macropores are ideal for this coupling due to their low back pressure and versatility in various formats.

i4-447628-1408672248718.jpg

Molecularly imprinted polymers (MIPs) are synthetic polymeric materials that mimic immunosorbents. They are widely used as sorbents for solid-phase extraction (SPE). The most common way to synthesize them is bulk polymerization because of its simplicity and versatility. This produces a hard monolith that has to be ground and sieved to obtain particles in the desired size range. However, the partial loss of the materials as fine dusts; the irregular shape of the particles produced and their wide size distribution, have led to a search for different polymerization methods to offset the drawbacks of the bulk polymerization process.

i4-441417-1408653261916.gif

Molecularly imprinted polymers (MIPs) are synthetic polymeric materials that mimic immunosorbents. They are widely used as sorbents for solid-phase extraction (SPE). The most common way to synthesize them is bulk polymerization because of its simplicity and versatility. This produces a hard monolith that has to be ground and sieved to obtain particles in the desired size range. However, the partial loss of the materials as fine dusts; the irregular shape of the particles produced and their wide size distribution, have led to a search for different polymerization methods to offset the drawbacks of the bulk polymerization process.