Kate Mosford of The Column spoke to Miguel Herrero of the Institute of Food Science Research (CIAL-CSIC) at the Spanish National Research Council, in Madrid, Spain, about his research in foodomics-based approaches, the evolution of food analysis, and the benefits of 2D LC in this application.
Kate Mosford of The Column spoke to Miguel Herrero of the Institute of Food Science Research (CIAL-CSIC) at the Spanish National Research Council, in Madrid, Spain, about his research in foodomics-based approaches, the evolution of food analysis, and the benefits of 2D LC in this application.
Q. What areas of food analysis are your group focusing on?
A: We work mainly in the application of foodomics-based approaches to study the bioactivity of dietary compounds. Our research group defined the term foodomics for the first time in 2009 as "a new discipline that studies the food and nutrition domains through the application and integration of advanced –'omics' technologies to improve consumers' well-being, health, and confidence".1 Basically, we believe that foodomics can help to provide new answers to some of the important challenges (such as food safety and quality, traceability, and new foods for health improvement and disease prevention) that society is facing at present. In this regard we maintain two parallel and interconnected research lines. One is focused on the development of new environmentally green processes to obtain bioactive compounds from natural sources, and the other is directed to the development and application of new advanced analytical methods to assess the bioactivity of those compounds.
Photo Credit: Larry Washburn/Getty Images
Q. Why is food analysis important and what are you currently working on?
A: There is no doubt that food analysis is crucial nowadays because it is essential to maintain and control food safety, traceability, and food legislation compliance as well as food quality of marketed products. More recently, food analysis has become important for the study of the beneficial health effects that some foods may have. The increase in the application of -omics approaches in food science and technology is further proof of its importance.
We are currently involved in two research projects. The first of these is at a national level and we are looking for sound scientific evidence using a foodomics approach on the bioactivity of food polyphenols (from rosemary, olive leaves, and algae) against colon cancer using in vitro and in vivo models. To do that we are using a wide array of novel approaches such as the use of new integrated extraction processes based on pressurized fluids to obtain polyphenols and selected fractions from the natural samples, as well as a combination of advanced analytical methods (mainly metabolomics and transcriptomics but also proteomics) with in vitro and in vivo assays.
The second one is a European project based on the development of biorefinery processes of microalgae. We are collaborating with 25 other research groups working on very different fields of application. Our main input is to develop green strategies to extract specialties from the studied microalgae and the different fractions generated during their biorefinery processing. The final goal of the project is to provide a proof-of-concept about the possibility to develop integrated, multiple-product biorefinery processes (involving cultivation, harvesting, extraction, processing, and application) for valuable specialties from algae for application in food, aquafeeds, and non-food products.
Q. How has food analysis evolved and what are the most recent trends?
A: Traditional food analysis has been progressively displaced by instrumental analysis and the use of hyphenated techniques, which are routinely applied in research laboratories to a certain extent. However, the great advances produced as a result of the "postgenomic era" have produced huge developments in analytical instruments, which are capable today of resolving problems unattainable not so long ago. Thanks to the use of those technologies, food science is working closely with other disciplines such as pharmacology, medicine, and biotechnology as the boundaries between them increasingly blend. A good example of this new reality is the great number of ongoing research projects dealing with the relationship between food and health.
This is where foodomics stands and why modern food analysis is so different to classical food analysis. In my opinion this is the most important trend in food analysis and we will surely see an increase in the type of research that will take advantage of these technologies to reach more global conclusions. Besides, the greater knowledge that may be gained through the application of transcriptomics, proteomics, and metabolomics will be essential to fulfill the strict requirements from many regulation agencies (such as the European Food Safety Authority [EFSA]) to demonstrate and understand the beneficial action of a food or food component in the body.
Q. How would you like the field of food analysis to evolve in the future? In your opinion, what is important for the future of food analysis?
A: I would like to see a stronger integration of the huge amount of data that is now generated using the different -omics approaches to help obtain stronger and more robust evidence of the potential health benefits that certain foods and food ingredients may provide. I think that this is the way which food analysis will evolve as society's (consumers, the media, and industry) interest in healthy foods increases.
The most important thing as a researcher will probably be to fully exploit all the capabilities that technology offers. In this regard, I think that the merging of different fields and the already mentioned diffusion of boundaries is very positive. Based on the interdisciplinary approach that most ambitious research projects have nowadays, the interaction between researchers with different backgrounds (analytical chemistry, microbiology, biochemistry, bioinformatics, and so on) will give a definitive boost to food-related research.
Q. What are the benefits of using 2D LC in food analysis, particularly in complex food samples? How easy is it to apply in this area?
A: One of the techniques that we use in the laboratory is comprehensive two-dimensional LC (LC×LC). This technique is able to provide increased resolving and identification power, which is really interesting for food analysis. Food samples are usually complex mixtures of different components of a diverse nature. Even when a food sample is rich in a particular class of those components, its composition is often very heterogeneous: Here is where LC×LC gives its best. There are natural mixtures that cannot be separated using mono-dimensional approaches; they are simply too complex, for example, polyphenols, carotenoids, or lipids. In those cases, a careful selection of each of the two dimensions involved in LC×LC separations may provide orthogonal and complementary separation mechanisms that could allow the separation of closely-related but different components that cannot be separated in one dimension. Furthermore, this technique allows sample treatments that sometimes conceal the real native composition in food to be avoided. For instance, using this approach it has been possible to describe the native carotenoid composition (free and esterified carotenoids) of oranges, avoiding the need of saponification.2
Obviously, as in life, nothing is perfect. The set-up of these methods can be very complicated because there are some technical and physical issues that should be overcome, including solvent incompatibilities between dimensions, the need for fast second dimension separations, and appropriate on-line transfers from first to second dimension, among others. On-line coupling to mass spectrometry (MS) is also another tricky point. Therefore, some requirements have to be met to make these separations worthy, but once one has everything in place, the obtained results are really beautiful.
Q. You recently studied the phenolic compound pattern of apples using 2D LC. Could you talk a little about this research?
A: In this work we applied an LC×LC–MS method to separate and identify apple procyanidins and other polyphenols simultaneously, obtaining a complete polyphenolic profile typical from different apple varieties.3 The most relevant part of this work was the development of a two-dimensional method coupling a hydrophilic interaction liquid chromatography (HILIC) separation in the D1 to a reversed-phase separation in the D2 that was capable of providing a complete polyphenolic profile which included flavan-3-ols and oligomeric procyanidins (with a degree of polymerization up to 8 units), several dihydrochalcones, flavonols, and phenolic acids in a single run. By combining the information coming from the diode array (DAD) and MS detectors we could tentatively identify some 65 polyphenols in those samples, which I think is a nice result.
Regarding the apple varieties studied, we could confirm that the polyphenolic profile was significantly different both quali- and quantitatively speaking. Just out of curiosity for those particularly worried about antioxidant intake, granny smith apples were those richer in procyanidins closely followed by reinette apples.
Q. You are the only national research group working with 2D LC in Spain at the moment - why do you think that is?
A: Right now, it is true that there is no other Spanish research group using LC×LC, although it is also true that there are not a huge amount of groups worldwide when compared to other analytical approaches. The main reason for this is undoubtedly the relative complexity of setting up a reliable LC×LC instrument. Commercial 2D LC instruments have recently entered the market, having overcome some of the limitations of building a system from the beginning. Previously, extensive expert experience was needed to build a robust instrument using different pumps, valves, connections, software integration, and data elaboration, which created a stumbling block to the take-up of the technique. In general, although one may suppose that it is similar, the situation for its sister technique GC×GC is rather different. GC×GC is strongly established and is more user-friendly. Anyway, I am sure that in the future more laboratories will discover the potential of this technique for their applications as the arrival of commercial 2D systems makes this approach easier.
Q. Where will your research with 2D LC take you in the future?
A: We are working on a variety of new separations of complex food-related samples right now. I am eager to continue with this line of research in my laboratory because there are quite a lot of underexplored analytes which could be analyzed using LC×LC. I would also like to have the chance to use this technique within metabolomics approaches because the potential there is massive. However, in that latter group of applications, sensitivity must be high. For this reason I would also like to explore some instrumental alternatives to make the LC×LC coupling less prone towards sensitivity problems.
Of course, the development of these new ideas is inevitably related to getting more support from our government, for science in general and to young researchers in particular. Right now, for young researchers like myself, it is quite difficult to keep doing what we are educated and prepared for because there is not a clear tenure track to allow the effective incorporation of researchers in the Spanish system. In any case, I will keep going on and hoping for the best.
1. A. Cifuentes, J. Chromatogr. A1216, 7109 (2009).
2. P. Dugo, M. Herrero, D. Giuffrida, T. Kumm, G. Dugo, and L. Mondello, J. Agric. Food Chem.56, 3478–3485 (2008).
3. L. Montero, M. Herrero, E. Ibáñez, and A. Cifuentes, J. Chromatogr. A1313, 275–283 (2013).
Miguel Herrero is currently a contracted researcher under the "Ramón y Cajal" programme at the Institute of Food Science Research (CIAL-CSIC) of the Spanish National Research Council, in Madrid, Spain. He holds a PhD in Food Science and Technology from the University Autonoma of Madrid, Spain (2006). He started working on LC×LC during his two-year postdoc with Professor L. Mondello and Professor P. Dugo at their laboratories at the University of Messina, Italy. Back in Spain, he rejoined his former Foodomics research group, where he works at present. His main research interests involve the study of new functional ingredients including the development of new advanced extraction and analytical methods to obtain and characterize interesting food-related compounds as well as to increase our knowledge about the physiological active forms of natural bioactive compounds. All of these, of course, including the development and application of new comprehensive 2D LC approaches. Miguel has been lucky enough to receive several awards related to his scientific career and is co-author of more than 65 SCI research papers and 16 book chapters. He is a member of the Spanish Society of Chromatography and Related Techniques (SECyTA) and the Association of Experts on Compressed Fluids (FLUCOMP).
E-mail: m.herrero@csic.es
Website: http://www.cial.uam-csic.es/pagperso/foodomics/Miguel_eng.htm
Analytical Challenges in Measuring Migration from Food Contact Materials
November 2nd 2015Food contact materials contain low molecular weight additives and processing aids which can migrate into foods leading to trace levels of contamination. Food safety is ensured through regulations, comprising compositional controls and migration limits, which present a significant analytical challenge to the food industry to ensure compliance and demonstrate due diligence. Of the various analytical approaches, LC-MS/MS has proved to be an essential tool in monitoring migration of target compounds into foods, and more sophisticated approaches such as LC-high resolution MS (Orbitrap) are being increasingly used for untargeted analysis to monitor non-intentionally added substances. This podcast will provide an overview to this area, illustrated with various applications showing current approaches being employed.
Advanced LC–MS Analysis for PFAS Analysis in Eggs
October 11th 2024The European Commission's regulation on maximum levels for certain contaminants in food highlights the need for precise and reliable methods to quantify per- and polyfluoroalkyl substances (PFAS) in various food matrices. This article discusses development and validation of a robust method for analyzing 21 PFAS compounds in chicken eggs using solid-phase extraction (SPE) and liquid chromatography–mass spectrometry (LC–MS).