Researchers from the University of Chemistry and Technology in Prague, Czech Republic, have developed a saffron authentication process based on ultrahigh-performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC–HRMS/MS) and multivariate data analysis.
Photo Credit: YulliaHolovchenko/Shutterstock.com
Researchers from the University of Chemistry and Technology in Prague, Czech Republic, have developed a saffron authentication process based on ultrahigh-performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC–HRMS/MS) and multivariate data analysis (1).
As one of the oldest and most expensive spices, saffron is a very enticing target for fraudulent activities. Rare and exotic with a complex production process that varies considerably dependent upon the production region, small amounts of saffron can be sold for a high price. In particular, Spanish saffron is highly sought after, a problem highlighted in the 2011 “saffron scandal”, which revealed that barely one percent of saffron labelled as “Spanish” was actually grown in Spain (2). Other types of saffron are also susceptible with a recent review identifying saffron as the fourth most commonly fraudulent food stuff (3).
Identifying the geographical origin of saffron has commonly been carried out through target analysis of a specific marker such as amino acids (4) or utilized stable isotope analysis (5), however, none of these methods employed a metabolomics approach and as such they relied on a generic extraction procedure. The aim of the current research was to investigate the suitability of metabolic fingerprinting using UHPLC–HRMS/MS to authenticate saffron sample origins and their respective harvest years.
Results indicated untargeted metabolic fingerprinting employing UHPLC–HRMS/MS merged with chemometrics was a formidable tool for saffron origin scrutiny, providing sufficient information to distinguish saffron origin using positive ionization data. The method also showed promise when used to distinguish harvest year using negative ionization data. - L.B.
References
Influence of Concentration in Conventional GPC/SEC and Advanced Detection GPC/SEC
March 21st 2025Sample concentration is a parameter that can influence the quality of gel permeation chromatography/size-exclusion chromatography (GPC/SEC) separations and the obtained results. Understanding this influence can help to support the development of reliable GPC/SEC methods.
Multi-Step Preparative LC–MS Workflow for Peptide Purification
March 21st 2025This article introduces a multi-step preparative purification workflow for synthetic peptides using liquid chromatography–mass spectrometry (LC–MS). The process involves optimizing separation conditions, scaling-up, fractionating, and confirming purity and recovery, using a single LC–MS system. High purity and recovery rates for synthetic peptides such as parathormone (PTH) are achieved. The method allows efficient purification and accurate confirmation of peptide synthesis and is suitable for handling complex preparative purification tasks.