A recent study highlighted a cost-effective, time-efficient method that can extract polycyclic aromatic hydrocarbons (PAHs) from water and fish samples over traditional SPE methods.
In a recent study published in the Journal of Chromatography A, researchers from the Institute of Agricultural Quality Standards and Testing Technology Research presented a method capable of extracting and analyzing polycyclic aromatic hydrocarbons (PAHs) from water and fish samples (1). The technique introduces naphthalene-modified magnetic nanoparticles (Fe3O4@Nap) that improve the precision, sensitivity, and simplicity of the extraction process (1).
Underwater view with school fish in ocean. Sea life in transparent water | Image Credit: © artifirsov - stock.adobe.com
For this study, a new one-step surface modification protocol was deployed. Naphthalene-6-phosphate was directly immobilized onto the Fe3O4 nanoparticles, harnessing the specific chelation interaction between phosphate groups and metal ions on the Fe3O4 surface. The authors used this approach to yield nanoparticles with hydrophobicity and π-π conjugative effects (1). As a result, the nanoparticles were highly effective in capturing PAHs.
The Fe3O4@Nap-based displayed strong magnetic responsiveness of Fe3O4, allowing rapid separation from the sample solution (1). Additionally, Fe3O4@Nap nanoparticles exhibitedselectivity and sensitivity, essential for accurate analysis.
Under the optimized conditions, the Fe3O4@Nap-based MSPE/gas chromatography–tandem mass spectrometry (MSPE/GC–MS/MS) method displayed linearity, precision, and accuracy for both water and fish samples. It was also an inexpensive alternative to traditional solid-phase extraction (SPE) materials because of the cost of the raw materials for the Fe3O4@Nap nanoparticles (1). This new method allows for large-scale production, making it more applicable to an industry setting.
Compared to other reported techniques, the Fe3O4@Nap-based also approach reduced the time required for sample preparation, making it an attractive option for PAH detection in environmental water and fish samples (1).
The Fe3O4@Nap-based MSPE/GC–MS/MS method offers a high-efficiency solution that combines sensitivity, specificity, and reusability (1). Themethod offers an alternative, yet effective solution that can help scientists and government agencies safeguard the environment and improve public health.
(1) Peng, X.; Liu, L.; Hu, X.; Yan, W.; Zheng, D.; Xia, Z.; Yu, Q.; Zhou, Y.; Xia, H.; Peng, L. Facile fabrication of naphthalene-functionalized magnetic nanoparticles for efficient extraction of polycyclic aromatic hydrocarbons from environmental water and fish samples. J. Chromatogr. A. 2023, 1706, 464229. DOI: 10.1016/j.chroma.2023.464229
University of Rouen-Normandy Scientists Explore Eco-Friendly Sampling Approach for GC-HRMS
April 17th 2025Root exudates—substances secreted by living plant roots—are challenging to sample, as they are typically extracted using artificial devices and can vary widely in both quantity and composition across plant species.
Sorbonne Researchers Develop Miniaturized GC Detector for VOC Analysis
April 16th 2025A team of scientists from the Paris university developed and optimized MAVERIC, a miniaturized and autonomous gas chromatography (GC) system coupled to a nano-gravimetric detector (NGD) based on a NEMS (nano-electromechanical-system) resonator.
Characterizing Plant Polysaccharides Using Size-Exclusion Chromatography
April 4th 2025With green chemistry becoming more standardized, Leena Pitkänen of Aalto University analyzed how useful size-exclusion chromatography (SEC) and asymmetric flow field-flow fractionation (AF4) could be in characterizing plant polysaccharides.