Webinar Date/Time: Tue, Oct 3, 2023 11:00 AM EDT
PFAS present the serious analytical challenge of identifying thousands of low-concentration compounds in complex matrices. High-resolution mass and ion mobility spectrometry enables targeted and non-targeted PFAS analysis, creating a powerful and intuitive workflow for compound identification.
Register Free: https://www.chromatographyonline.com/lcgc_w/TIMS
Event Overview
The detection and identification of thousands of PFAS compounds at very low concentrations can present a serious analytical challenge, often aggravated by the complexity of environmental matrixes in which these pollutants are found. Abundance of isomeric and previously unreported PFAS structures can make this task even more difficult. The combination of high-resolution mass spectrometry (MS) with high-resolution ion mobility spectrometry (IMS) allows reliable separation of isomeric PFAS compounds, while highly optimized methods of ionization in combination with collisional cross-section ion filtering provide high levels of sensitivity and analytical accuracy even in a complex matrix. Hardware performance combined with advanced data processing software enables identification of unknown compounds and streamlines a difficult analytical challenge into a manageable workflow.
Key Learning Objectives
Who Should Attend
Speaker:
Sam Putnam
Applications Scientist
Bruker Applied Mass Spectrometry
Sam Putnam is an applications scientist working in the Applied Mass Spectrometry division of Bruker Scientific. He received his PhD in Environmental Analytical Chemistry from the University of South Carolina, researching harmful algal blooms in lakes and reservoirs. He specializes in environmental, food, and forensics applications at Bruker across the company’s mass spectrometry portfolio, including triple quad, QTOF, ion mobility, and FT-ICR instruments.
Register Free: https://www.chromatographyonline.com/lcgc_w/TIMS
New Method Explored for the Detection of CECs in Crops Irrigated with Contaminated Water
April 30th 2025This new study presents a validated QuEChERS–LC-MS/MS method for detecting eight persistent, mobile, and toxic substances in escarole, tomatoes, and tomato leaves irrigated with contaminated water.
Analytical Challenges in Measuring Migration from Food Contact Materials
November 2nd 2015Food contact materials contain low molecular weight additives and processing aids which can migrate into foods leading to trace levels of contamination. Food safety is ensured through regulations, comprising compositional controls and migration limits, which present a significant analytical challenge to the food industry to ensure compliance and demonstrate due diligence. Of the various analytical approaches, LC-MS/MS has proved to be an essential tool in monitoring migration of target compounds into foods, and more sophisticated approaches such as LC-high resolution MS (Orbitrap) are being increasingly used for untargeted analysis to monitor non-intentionally added substances. This podcast will provide an overview to this area, illustrated with various applications showing current approaches being employed.
University of Tasmania Researchers Explore Haloacetic Acid Determiniation in Water with capLC–MS
April 29th 2025Haloacetic acid detection has become important when analyzing drinking and swimming pool water. University of Tasmania researchers have begun applying capillary liquid chromatography as a means of detecting these substances.
Prioritizing Non-Target Screening in LC–HRMS Environmental Sample Analysis
April 28th 2025When analyzing samples using liquid chromatography–high-resolution mass spectrometry, there are various ways the processes can be improved. Researchers created new methods for prioritizing these strategies.