All PublicationsLCGC InternationalLCGC North AmericaLCGC EuropeLCGC Asia PacificLCGC SupplementsThe ColumnE-BooksThe Application Notebook
Columns
All NewsInterviews
All App NotesBiological, Medical, and ClinicalBiopharmaceuticalsCannabisChiralEnvironmentalFood and BeverageGCGC-MSGeneralIndustrialLCLC-MSMedical/BiologicalMisc TechniquesPharmaceuticalsPolymersSample PrepSize-Exclusion Chromatography (SEC)Supercritical Fluid Chromatography (SFC)
Conference CoverageConference Listing
All WebcastsChromAcademy
ProductsE-BooksChromTubeEventsAnalytically Speaking PodcastPodcastsPodcast SeriesSponsored VideosQ&AsSponsored ContentContent Engagement HubsTips & TricksIndustry InsightsCareer OpportunitiesPeer Exchange
DirectorySubscribe
Analytical Instrumentation
Analytical Theory
Biological, Medical, and Clinical Analysis
Biopharmaceutical Perspectives
Biopharmaceuticals and Protein Analysis
Cannabis Analysis
Capillary Electrophoresis
Chiral Chromatography
ChromAcademy
Corporate Profiles
Data Acquisition, Handling, and Archiving
Data Analysis, Statistics, and Chemometrics
Dietary Supplements Analysis
Environmental Analysis
Field-Flow Fractionation (FFF)
Food and Beverage Analysis
Forensics, Narcotics
From the Editor
GC–MS
Gas Chromatography (GC)
HILIC
HPLC
Ion Chromatography
LCGC Interviews
LCGC TV: Gas Chromatography
LCGC TV: Hyphenated Techniques
LCGC TV: Liquid Chromatography
LCGC TV: Sample Preparation
LC–MS
Liquid Chromatography (LC/HPLC)
Market Profiles
Mass Spectrometry
Medical/Biological
Multidimensional GC
Multidimensional LC
Peer-Reviewed Articles
Pharmaceutical Analysis
Preparative-Scale Chromatography
Process Analytical Technology (PAT)
Quality Control/Quality Assurance (QA/QC)
Quality by Design (QbD)
Regulatory Standards, GLP and GMP Compliance
Sample Preparation
Size-Exclusion Chromatography (SEC)
Solid-Phase Extraction (SPE)
Supercritical Fluid Chromatography (SFC)
Supercritical Fluid Extraction (SFC)
The Next Generation
Thin Layer Chromatography
Trends
UHPLC
Web of Science
Spotlight -
  • Agilent Technologies Battery Summit
  • Advances in Gas Chromatography
  • The 2025 LCGC International PFAS Summit
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

Analytical Instrumentation
Analytical Theory
Biological, Medical, and Clinical Analysis
Biopharmaceutical Perspectives
Biopharmaceuticals and Protein Analysis
Cannabis Analysis
Capillary Electrophoresis
Chiral Chromatography
ChromAcademy
Corporate Profiles
Data Acquisition, Handling, and Archiving
Data Analysis, Statistics, and Chemometrics
Dietary Supplements Analysis
Environmental Analysis
Field-Flow Fractionation (FFF)
Food and Beverage Analysis
Forensics, Narcotics
From the Editor
GC–MS
Gas Chromatography (GC)
HILIC
HPLC
Ion Chromatography
LCGC Interviews
LCGC TV: Gas Chromatography
LCGC TV: Hyphenated Techniques
LCGC TV: Liquid Chromatography
LCGC TV: Sample Preparation
LC–MS
Liquid Chromatography (LC/HPLC)
Market Profiles
Mass Spectrometry
Medical/Biological
Multidimensional GC
Multidimensional LC
Peer-Reviewed Articles
Pharmaceutical Analysis
Preparative-Scale Chromatography
Process Analytical Technology (PAT)
Quality Control/Quality Assurance (QA/QC)
Quality by Design (QbD)
Regulatory Standards, GLP and GMP Compliance
Sample Preparation
Size-Exclusion Chromatography (SEC)
Solid-Phase Extraction (SPE)
Supercritical Fluid Chromatography (SFC)
Supercritical Fluid Extraction (SFC)
The Next Generation
Thin Layer Chromatography
Trends
UHPLC
Web of Science
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

    • Columns
    • Directory
    • Subscribe
Advertisement

Unraveling the Links Between Diet and Human Health Using LC–MS-MS

October 1, 2014
Article

Special Issues

LCGC SupplementsSpecial Issues-10-01-2014
Volume 12
Issue 4
Pages: 35–36

We recently spoke to Gary Duncan and Wendy Russell of the Rowett Institute of Nutrition & Health in Aberdeen, Scotland, about the significance of phytochemical bioavailability to human health and the important role of liquid chromatography linked to tandem mass spectrometry (LC–MS-MS) in their research.

We recently spoke to Gary Duncan and Wendy Russell of the Rowett Institute of Nutrition & Health in Aberdeen, Scotland, about the significance of phytochemical bioavailability to human health and the important role of liquid chromatography linked to tandem mass spectrometry (LC–MS-MS) in their research.

Why are you using a quantitative metabolomics approach to study diet and human health?

Russell: We only need to look around us to see that nutritional-related disorders such as obesity, diabetes, cardiovascular disease, and some cancers are emerging as a public health crisis, particularly in Scotland. Understanding the balance between diet and human health is vital, if we are to establish evidence for the provision of healthy food. As chemists, it is clear to us that we must understand the complexity of the human diet, the availability of compounds from the food matrix, and how these are absorbed and transformed in the body. Without this information it will be impossible to relate dietary composition with the overall impact of diet on human health.

Duncan: For the first time, advances in analytical methodology can provide this information and we have adopted a quantitative metabolomics approach to achieve this. Genomic analysis provides an understanding of predisposition to disease and proteomics informs on disease occurrence. Metabolomics has always been an excellent predictor of disease and is equally likely to deliver information on the status of human health.

How important is phytochemical bioavailability to human health and in food and beverage analysis?

Russell: Our analysis of the diet considers the major macronutrients (carbohydrate, protein, and fat) and micronutrient minerals and vitamins. However, the non-nutrient phytochemicals are considered to contribute to the prevention of many diet-related diseases (1). These are thought to be preventative based on their bioactive properties (that is, anti-oxidants and anti-inflammatories). One important mechanism appears to be through their anti-inflammatory activity, as low-grade chronic inflammation appears to be a critical component of disease development and progression (2). We provide detailed information on the phytochemical profiles of both the diet and dietary-derived metabolites in the body (3). This can inform the food and beverage industry to provide healthier products to the market in the form of improved commonly consumed ready meals, as well as regularly consumed snacks and drinks.

What challenges have you faced in this work?

Duncan: It is important for us that we use a targeted approach that includes a comprehensive range of metabolites that are considered both beneficial and detrimental to human health. This requires the analysis of a complex and increasingly growing number of metabolites. The analytical methodology is challenging and constantly evolving as we introduce new groups of compounds to our data set. In addition, we want to report how these compounds are transformed (both metabolically and by the gut bacteria) and distributed in the body (4,5). This not only requires the identification of the derivatives of the parent phytochemicals, but also the analysis of highly variable biological samples, where sensitivity and stability are important issues.

With bowel disorders on the rise, have you seen a trend toward a more healthy diet and knowledge of what is essentially "good for you" in your research?

Russell: Lifestyle choices and, in particular, lack of physical activity and poor diet are contributing factors to the high incidence of bowel disease worldwide. There is increasing evidence that the gut microbiota play a major role in these disorders and that the dietary metabolites they produce might be a contributing factor. We have shown from human studies that high protein diets that do not contain enough dietary fiber are likely to be detrimental to gut health in the long term (5). In these studies, we demonstrated using both targeted and liquid chromatography–tandem mass spectrometry (LC–MS-MS) that there were increased hazardous metabolites and less anti-inflammatory and cancer-protective compounds present in the gut when people ate these high-protein, low-fiber diets. We are currently running similar studies that are funded by the Scottish Government; The Food, Land, and People Programme is investigating components of the Scottish diet, predominantly fruits, vegetables, and cereals (6). By understanding the composition of these foods, the impact of plant breeding, and food production processes we aim to provide healthier and more sustainable food.

Why is liquid chromatography coupled to tandem mass spectrometry (LC–MS-MS) your analytical method of choice?

Duncan: Since its inception and, more significantly, its commercialization, LC–MS has played an integral part in the analysis, identification, and quantification of natural products. The power of the LC–MS technique, or more accurately liquid chromatography combined with tandem mass spectrometry (LC–MS–MS), lies in its ability to separate complex, biological mixtures, and for pure compounds to be ionized directly from the liquid phase into the gaseous phase, using the mass spectrometer to identify or quantify the compound.

In the late 1980s, several groups had developed LC–MS methods to identify metabolites in various subclasses of phytochemicals but it wasn't until the late 1990s that the true value of LC–MS, in the analysis of phytochemicals, started to become more apparent. Papers were published utilizing the capability of the technique to perform large-scale screening of phytochemicals in complex mixtures.

With the development of ever more powerful and sensitive mass spectrometers, the analysis of phytochemicals using mass spectrometry diverged into two distinct categories: The metabolomic–qualitative approach using high-resolution mass spectrometry to identify large numbers of metabolites from a single analysis, and the targeted–quantitative approach looking at known metabolites using triple-quadrupole mass spectrometry. As the hardware on mass spectrometers has improved (detectors now have the capability of measuring as little as 1 pg on column), so has the power of the computers and software that operate them. Faster scan speeds with shorter dwell times (the time the system spends looking at an individual mass) lead to more analyses being performed during a single scan and now a large number of metabolites from many different types of groups can be measured by LC–MS with unparalleled sensitivity. Our work has focused on the quantitative analysis of phytochemicals utilizing the selectivity of the multiple reaction monitoring (MRM) method with triple-quadrupole mass spectrometry to look at a large and diverse range of dietary constituents found in both the food we eat and in the human body. LC–MS-MS provides the ideal platform to measure these metabolites, which are sometimes only present in small concentrations, with the high-throughput analysis required for large-scale human studies (8).

Where will your research into human health and food analysis take you in the future?

Russell: Understanding the human metabolic phenotype (the metabotype) will allow us to assess the specific contribution of diet on the metabolites bioavailable in the body and their translated effect on general health. We anticipate that by correlating the individual compounds found in foods with their observed bioactivity, we will be able to provide the knowledge required for the food and beverage industry to provide healthier and more sustainable food for a growing and increasingly unhealthy population. Up until now, we have focused on characterizing the metabotype, in terms of exogenous metabolites, predominantly of dietary origin. Our more recent work has identified the impact of diet on certain endogenous molecules produced by the human body (prostanoids, lysophosphatidylinositols, and bile acids) (9,10). From an analytical perspective, this work is likely to be more challenging, as the molecules are generally present in very low concentrations, are less stable, and are subject to inter-individual variation. From a dietary standpoint, we aim to provide food which will benefit health across the population. However, an understanding of endogenous metabolism may highlight a future role for more personalized nutritional strategies.

References

(1) W.R. Russell and G.G. Duthie, Proc. Nutr. Soc. 70(3), 389–96 (2011).

(2) W.R. Russell, S.H. Duncan, and H.J. Flint, Proc. Nutr. Soc. 72(1), 178–88 (2013).

(3) W.R. Russell, L. Hoyles, H.J. Flint, and M. Dumas, Curr. Opin. Microbiol. 16(3), 246–54 (2013).

(4) W.R. Russell, S.H. Duncan, L. Scobbie, G. Duncan, L. Cantlay, A.G. Calder, S.E. Anderson, and H.J. Flint, Mol. Nutr. Food Res. 57(3), 523–35 (2013).

(5) W.R. Russell and S.H. Duncan, TrAC, Trends Anal. Chem. 52, 54–60 (2013).

(6) W.R. Russell, S.W. Gratz, S.H. Duncan G. Holtrop, J. Ince, L. Scobbie, G. Duncan, A.M. Johnstone, G.E. Lobley, R.J. Wallace, G.G. Duthie, and H.J. Flint, Am. J. Clin. Nutr. 93(5), 1062–1072 (2011).

(7) M. Neacsu J. McMonagle, R.J. Fletcher, L. Scobbie, G. Duncan, L. Cantlay, B. de Roos, G.G. Duthie, and W.R. Russell, Food Chemistry 141(3), 2880–6 (2013).

(8) W.R. Russell and S.H. Duncan, MS-Based Methodologies to Study the Microbial Metabolome in Foodomics (John Wiley & Sons, Inc., Hoboken, New Jersey, 2013).

(9) W.R. Russell, J.E. Drew, L. Scobbie, and G.G. Duthie BBA: Molecular Basis of Disease 1762(1), 124–130 (2006).

(10) J.M. Moreno-Navarrete, V. Catalán, L. Whyte, A. Díaz-Arteaga, R. Vázquez-Martínez, F. Rotellar, R. Guzmán, J. Gómez-Ambrosi, M.R. Pulido, W.R. Russell, M. Imbernón, R.A. Ross, M.M. Malagón, C. Dieguez, J.M. Fernández-Real, G. Frühbeck, and R. Nogueiras, Diabetes 61, 281–291 (2012).

Articles in this issue

MassSpec3_i9_t-856308-1417773405174.gif
Large-Scale Targeted Protein Quantification Using Wide Selected-Ion Monitoring Data-Independent Acquisition
MassSpec1_i3-856306-1417773419975.jpg
Application of Ambient Sampling Portable Mass Spectrometry Toward On-Site Screening of Clandestine Drug Operations
MassSpec4_i1_t-856309-1417773399924.gif
Simultaneous Determination of Methylxanthines and Cotinine in Human Plasma by Solid-Phase Extraction Followed by LC–MS-MS
MassSpec2_i1_t-856307-1417773411606.jpg
GC–MS Analysis of an Herbal Medicinal Remedy to Identify Potential Toxic Compounds
Unraveling the Links Between Diet and Human Health Using LC–MS-MS
Vol 12 No 4 Current Trends in Mass Spectrometry October 2014 Issue PDF
Recent Videos
Image Credit: Josephine Ouma
Image Credit: Josephine Ouma
Image Credit: Josephine Ouma
Related Content

Pressed grape pomace, seeds and skins. Winemaking background. | Image Credit: © aquatarkus - stock.adobe.com

Extracting Grape Pomace Compounds with Two-Dimensional Liquid Chromatography

Aaron Acevedo
June 12th 2025
Article

Grape pomace, a byproduct of the winery industry, holds various phenolic compounds within it. Scientists used liquid chromatography-based techniques to harvest these potentially beneficial components.


cropped view of happy man adding pet food in bowl near akita inu dog. | Image Credit: © LIGHTFIELD STUDIOS - stock.adobe.com

Detecting Pesticide Residues in Pet Feed Using QuEChERS Methods

Aaron Acevedo
June 11th 2025
Article

New QuEChERs-based methods were created to detect pesticide residues in commercial dry pet food.


Shea butter in spoon and bowls on wooden background, close up | Image Credit: © Africa Studio - stock.adobe.com

Profiling Shea Kernels Using Liquid Chromatography and Mass Spectrometry

Aaron Acevedo
June 9th 2025
Article

Shea kernels contain bioactive secondary metabolites that can offer potential health benefits. Researchers aimed to learn more about these substances.


Porto, Portugal - July 30 2019: University of Porto building | Image Credit: © Cabarsphotography - stock.adobe.com

Quantifying Microplastics in Water Using Optimized SPE and LC–MS/MS

Aaron Acevedo
June 3rd 2025
Article

Water pollution management is an important process that faces difficulty with handling microplastics. University of Porto (Portugal) researchers aimed to optimize existing methods to help rectify this issue.


Stavanger, the forth largest metropolitan area, Rogaland county in Southwest Norway, Stavanger. Its old city core has mostly historical wooden houses. | Image Credit: © Luis - stock.adobe.com

Salting-Out Coupled with UHPLC-MS/MS for Tryptophan Metabolite and Bile Acid Profiling

Aaron Acevedo
May 29th 2025
Article

In a new study, researchers explored quantifying bile acids and tryptophan metabolites in human serum samples was created using ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS).


Holzverkleidetes Gebäude ("Holzlaube") der Freien Universität Berlin (FU) auf dem Campus in Dahlem, Berlin, 28.09.2023 | Image Credit: © Achim Wagner - stock.adobe.com

LC–MS/MS Assay for Quantification of Advancing Antibacterial Efficacy Profiling

Aaron Acevedo
May 29th 2025
Article

To address multi-drug resistance (MDR) among harmful substances, liquid chromatography–tandem mass spectrometry was used to test fosfomycin as a means of bypassing growing MDR amongst microorganisms.

Related Content

Pressed grape pomace, seeds and skins. Winemaking background. | Image Credit: © aquatarkus - stock.adobe.com

Extracting Grape Pomace Compounds with Two-Dimensional Liquid Chromatography

Aaron Acevedo
June 12th 2025
Article

Grape pomace, a byproduct of the winery industry, holds various phenolic compounds within it. Scientists used liquid chromatography-based techniques to harvest these potentially beneficial components.


cropped view of happy man adding pet food in bowl near akita inu dog. | Image Credit: © LIGHTFIELD STUDIOS - stock.adobe.com

Detecting Pesticide Residues in Pet Feed Using QuEChERS Methods

Aaron Acevedo
June 11th 2025
Article

New QuEChERs-based methods were created to detect pesticide residues in commercial dry pet food.


Shea butter in spoon and bowls on wooden background, close up | Image Credit: © Africa Studio - stock.adobe.com

Profiling Shea Kernels Using Liquid Chromatography and Mass Spectrometry

Aaron Acevedo
June 9th 2025
Article

Shea kernels contain bioactive secondary metabolites that can offer potential health benefits. Researchers aimed to learn more about these substances.


Porto, Portugal - July 30 2019: University of Porto building | Image Credit: © Cabarsphotography - stock.adobe.com

Quantifying Microplastics in Water Using Optimized SPE and LC–MS/MS

Aaron Acevedo
June 3rd 2025
Article

Water pollution management is an important process that faces difficulty with handling microplastics. University of Porto (Portugal) researchers aimed to optimize existing methods to help rectify this issue.


Stavanger, the forth largest metropolitan area, Rogaland county in Southwest Norway, Stavanger. Its old city core has mostly historical wooden houses. | Image Credit: © Luis - stock.adobe.com

Salting-Out Coupled with UHPLC-MS/MS for Tryptophan Metabolite and Bile Acid Profiling

Aaron Acevedo
May 29th 2025
Article

In a new study, researchers explored quantifying bile acids and tryptophan metabolites in human serum samples was created using ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS).


Holzverkleidetes Gebäude ("Holzlaube") der Freien Universität Berlin (FU) auf dem Campus in Dahlem, Berlin, 28.09.2023 | Image Credit: © Achim Wagner - stock.adobe.com

LC–MS/MS Assay for Quantification of Advancing Antibacterial Efficacy Profiling

Aaron Acevedo
May 29th 2025
Article

To address multi-drug resistance (MDR) among harmful substances, liquid chromatography–tandem mass spectrometry was used to test fosfomycin as a means of bypassing growing MDR amongst microorganisms.

About
Advertise
Author Guidelines
Contact Us
Editorial Advisory Board
Ethics Policy
Do Not Sell My Personal Information
Privacy Policy
Permissions
Subscriptions
Terms and Conditions
Contact Info

2 Commerce Drive
Cranbury, NJ 08512

609-716-7777

© 2025 MJH Life Sciences

All rights reserved.
Home
About Us
News