Anthony Macherone | Authors


Liquid Chromatography–Time-of-Flight Mass Spectrometry for Cannabinoid Profiling and Quantitation in Hemp Oil Extracts

A primary impediment to cannabinoid research is the fact that materials possessing psychoactive Δ-9-tetrathydrocannabinol are considered Schedule I drugs as defined in the U.S. Controlled Substances Act. An alternative source of cannabinoids may be found in hemp oil extracts. Hemp contains a low percentage of Δ-9-tetrathydrocannabinol (THC) by weight but relatively high amounts of non-psychoactive cannabinoids. The liquid chromatography-time of flight mass spectrometry (LC-TOF) method presented herein allows for the accurate, precise and robust speciation, profiling and quantification of cannabinoids in hemp oil extracts and commercial cannabinoid products for research and development laboratories. The method was determined to chromatographically separate 11 cannabinoids including differentiation of Δ-8-tetrahdrocannabinol and THC with excellent linear dynamic range, specificity and sensitivity.

Combining Exposomics with Genetic Disease Screening to Better 
Understand Honey Bee Health

The western honey bee population has succumbed to a host of environmental stressors. Although many investigations offer insight into the reasons for the global health decline of honey bees, this complex combination of stressors has made it difficult to pinpoint key features of disease causality. This article describes a pilot study of hives in seven geographical locations in eastern Pennsylvania.

Ultralow Detection of Estrogenic Compounds by GC–NCI-MS-MS

A number of clinical situations now call for high-sensitivity measurement of estrogens, including monitoring during female hormone replacement therapy, antiestrogen treatment, and estrogen deficiency in men. Traditional immunoassay methods and liquid chromatography–tandem mass spectrometry (LC–MS-MS) do not provide the sensitivity and selectivity required for these applications. In contrast, a gas chromatography–negative chemical ionization–tandem mass spectrometry (GC–NCI-MS-MS) platform can provide detection limits below 1 pg/mL when used in conjunction with the appropriate derivatization protocol, with very short cycle times.