Rawi Ramautar | Authors


Capillary Electrophoresis–Mass Spectrometry for Metabolomics: Extracting Chemical Information from Less

In this HPLC 2019 topic preview, Rawi Ramautar discusses capillary electrophoresis–mass spectrometry (CE–MS) for metabolomics and why the technique can help researchers overcome the issues which arise from low amounts of material. HPLC 2019 conference will be held in Milan, Italy, from 16–20 June.

Resolving Volume-Restricted Metabolomics Using Sheathless Capillary Electrophoresis– Mass Spectrometry

The analytical toolbox used in present-day metabolomics encounters difficulties for the analysis of limited amounts of biological samples. Therefore, a significant number of crucial biomedical and clinical questions cannot be addressed by the current metabolomics approach. Capillary electrophoresis–mass spectrometry (CE–MS) has shown considerable potential for the profiling of polar and charged metabolites in volume-restricted or mass-limited biological samples. This article considers advances that significantly improved the performance of CE–MS for in-depth metabolic profiling of limited sample amounts. Attention is also devoted to various technical aspects that still need to be addressed to make CE–MS a viable approach for volume-restricted metabolomics.

Capillary Electrophoresis: The Past, Present, and Future

Inspired by the work of Jorgenson and Lukacs, 30 years ago, the group of Richard Smith at Pacific Northwest National Laboratory in Washington (USA) reported the first online coupling of the microscale separation technique capillary electrophoresis (CE) to electrospray ionization (ESI) mass spectrometry (MS) using a sheath-liquid interface.