Rui Chen | Authors

Thar Instruements, Inc.

Articles

Chiral Purification with Stacked Injections and Collections Using the Prep 100 SFC MS Directed System

Chiral chromatography has become the preferred tool for enantiomer separations in the early stages of pharmaceutical development for the purpose of accurately identifying single pure enantiomers with pharmacologic, toxicological, and clinical information, as stipulated by the FDA.1

A Comparative Study on the Purification of Library Compounds in Drug Discovery Using Mass-Directed Preparative SFC and Preparative RPLC

In the past decade, supercritical fluid chromatography (SFC) has experienced a steady growth in acceptance, particularly in pharmaceutical and chemical laboratories. In SFC, "supercritical" CO2 combined with one or more polar organic solvents, most commonly alcohols, are used as mobile phase. Preparative SFC is deemed by many to hold the greatest promise to attain mainstream acceptance. The reduction in solvent consumption and collection in relatively small volumes of volatile organic solvents, hence, a much less stringent post-purification endeavour, lead to significant savings on operation costs. For example, Ripka et al. calculated that 20000 samples purified by SFC instead of reverse phase liquid chromatography (RPLC) would realize a 48 times reduction in solvent consumption.1

A Case Study of Using Thar SFC-MS Prep 30® to Purify Polar, Basic Pharmaceutical Relevant Compounds

In the past decade, supercritical fluid chromatography (SFC) has experienced a striking resurgence and exponential growth in acceptance, particularly in pharmaceutical and chemical laboratories. In SFC, "supercritical" CO2, in combination with one or more polar organic solvents, most commonly alcohols, are used as mobile phase. The polarity of CO2 is similar to that of hexane, and thereby making SFC a normal phase chromatographic technique. SFC has readily lent itself as an attractive complement to reversed phase HPLC (RPLC). For instance, in separating polar compounds that have little retention, and/or selectivity, even with special polar group embedded columns, SFC holds a unique advantage over RPLC due to its normal phase separation mechanism.