Thorsten Teutenberg

Institute of Energy- and Environmental Technology, Duisburg, Germany

Articles by Thorsten Teutenberg

figure 1 L.png

Comprehensive two-dimensional liquid chromatography (LC×LC) is evolving and becoming more commonly used in practice, but there are some specific problems still present that hamper the widespread use of this technology. One key aspect is the coupling of an on-line LC×LC system to a mass spectrometer. Generally, on-line LC×LC is based on a very fast second dimension separation to achieve low cycle times. This often results in flow rates that are far above the optimum for electrospray ionization mass spectrometry (ESI-MS). This month’s “Multidimensional Matters” looks at the benefits of miniaturization in the first and second dimension for coupling with a high-resolution mass spectrometer (HRMS) and describes an environmental analysis application.

i17_t-397284-1408673011806.gif

This article describes and compares a number of approaches to increase the speed of liquid chromatographic separations. On a standard LC column, a gain of a factor two in the run time (from 10 to 5 minutes) was achieved by increasing the flow-rate two-fold. On a monolithic column, a column operated at high temperature (120 ?C) and a short column, flow-rates could be increased typically five-fold, resulting in run times in the order of 2 minutes. This was accompanied by a sometimes considerable loss in separation efficiency. A combination of a very short run time and unaffected separation efficiency was realized on a UPLC system, designed for use at higher pressure. By working at approximately 800 bar, the analytes could be well separated within 30 seconds.