In a new study published in Analytical and Bioanalytical Chemistry, scientists from South Dakota State University and the University of Colorado School of Medicine developed a method to detect traces of cyanide in blood samples using liquid chromatography–tandem mass spectrometry (LC–MS/MS) (1).
Intense cluttering of blood cells | Image Credit: © Argus - stock.adobe.com
Cyanide (CN) can be a dangerous poison (cyanide anion [CN-] or hydrogen cyanide [HCN]), but it is also a common chemical component in different natural and anthropogenic substances. Acute CN toxicity happens by blocking terminal electron transfer by inhibiting cytochrome c oxidase, which plays an important role in cellular respiration (2). The blockage is caused by cyanide poisoning the mitochondrial electron transport chain within cells, making the cells unable to derive energy from oxygen. This can result in cellular hypoxia, cytotoxic anoxia, and potential death. As such, it is critical to check for blood CN concentrations, along with the major metabolite, thiocyanate (SCN-).
However, simultaneously detecting CN and SCN- in blood can be a complicated process. As part of this study, the scientists created a method to detect CN and SCN- from human ante- and postmortem blood using LC–MS/MS analysis. Sample preparation for CN involved active microdiffusion with subsequent chemical modification using naphthalene-2,3-dicarboxaldehyde (NDA) and taurine (i.e., the capture solution). SCN- preparation was conducted with protein precipitation and monobromobimane (MBB) modification.
After the experiment, it was revealed that the method had good sensitivity for CN, with antemortem limit of detection (LODs) of 219 nM and 605 nM for CN and SCN-, respectively, and postmortem LODs of 352 nM and 509 nM. Additionally, the method’s dynamic rangers were 5–500 µM for antemortem blood and 10–500 µM for postmortem blood. The method produced good accuracy (100 ± 15%) and precision (≤ 15.2% relative standard deviation), all while being able to detect elevated levels of CN and SCN- in blood samples.
(1) Alluhayb, A. H.; Severance, C.; Hendry-Hofer, T.; Bebarta, V. S.; Logue, B. A. Concurrent determination of cyanide and thiocyanate in human and swine antemortem and postmortem blood by high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 415, 6595–6609. DOI: https://doi.org/10.1007/s00216-023-04939-6
(2) Cytochrome Oxidase. LibreTexts 2022. https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_342%3A_Bio-inorganic_Chemistry/Readings/Metals_in_Biological_Systems_(Saint_Mary%27s_College)/Cytochrome_Oxidase (accessed 2023-11-28)
(3) Factsheet: Cyanide. The Johns Hopkins University 2022. https://centerforhealthsecurity.org/sites/default/files/2023-02/cyanide.pdf (accessed 2023-11-28)
HPLC 2025 Preview: The Present and Future of Automation in Analytical Laboratories
May 22nd 2025Analytical laboratories are undergoing a fundamental transformation. In the face of increasing sample volumes, growing regulatory requirements, and the rising demand for faster, more precise, and cost-efficient analysis, optimizing laboratory processes is becoming a central focus. Automation technologies offer promising solutions in this regard. Recently, they have evolved from isolated solutions to comprehensive systems that permeate nearly all areas of laboratory practice. This development not only opens up new opportunities in terms of efficiency, data quality, and scalability but also brings technical, organizational, and personnel challenges. To successfully address these, strategic approaches are needed that consider both the technological and human dimensions of the transformation.
Quantifying Isavuconazole in Dried Blood Spots Using HPLC
May 21st 2025Isavuconazole, an antimycotic agent used to treat fungal infections, can typically be found during dried blood spot sampling. However, there are obstacles that keep it from being an ideal approach for properly determining the drug’s presence.
HPLC 2025 Preview: On The Road With Your Chromatograph?
Published: May 21st 2025 | Updated: May 21st 2025Brett Paull from the University of Tasmania, Tasmania and his team describe the latest development in portable LC instruments and their experience of taking portable systems out to the field.