Scientists from the National Institute of Standards and Technology (NIST) have demonstrated the application of PLOT-cryoadsorption (PLOT–cryo) coupled to gas chromatography–mass spectrometry (GC–MS) for the analysis of ignitable liquid (IL) residues in fire debris.
Scientists from the National Institute of Standards and Technology (NIST) have demonstrated the application of PLOT-cryoadsorption (PLOT–cryo) coupled to gas chromatography–mass spectrometry (GC–MS) for the analysis of ignitable liquid (IL) residues in fire debris. According to the study published in the Journal of Chromatography A, the method can simultaneously collect vapours from up to eight sample vials at the same time.1
When investigating the scene of a fire investigators look for evidence of ignitable liquids, such as gasoline and petrol. Debris is collected at the scene in sealed paint tins, and is then transported back to the laboratory for testing. According to the study, the most common way to sample the headspace is to use activated charcoal. The strip is held above the headspace for 2–16 h before it is extracted and analyzed using GC–MS.
Eleven different ignitable liquids were applied to Douglas fir, plywood, and nylon carpet and subsequently burnt. The charred remains were then collected into a sealed vial, before the vapours were adsorbed to short porous layer open tubular (PLOT) columns at low temperature. The capillaries were then eluted and analyzed using GC–MS.
Sampling the headspace took 3 min opposed to the 2 to 6 h typically required for the carbon strip method. The columns were then eluted and the resulting factions analyzed using GC–MS. The PLOT-cryo method was more sensitive than purge-and-trap cartridges or carbon strip sampling, and could be used with up to 7 different sorbent phases simultaneously. Furthermore, the method could be used on samples from 50 mg up to 1 kg. Thomas Bruno, corresponding author of the paper, told The Column: “Fire debris analysis can be challenging because of background interference and the low concentrations of target analytes. Since the PLOT‑cryo method of headspace collection is sensitive, selective, and fast, it offered many advantages when compared to usual methods.” - B.D.
Reference
1. J.E. Nichols, M.E. Harrie, T.M. Lovestead, and T.J. Bruno, Journal of Chromatography A1334, 126–138 (2014).
Mass Spectrometry Analysis Sheds Light on Mysterious Marine Debris
December 9th 2024LCGC International sat down with Christopher Kozak, a professor at Memorial University to speak about his recent research using MALDI-TOF analysis to identify unknown blobs in Newfoundland, Canada’s Placentia Bay.
Simplifying the GC Laboratory for Improved Efficiency
December 9th 2024Laboratories continually work to increase the capacity of their equipment, improve turnaround times and gain confident and detailed insights without generating additional burden on their operators. Discover how adopting the simplification strategy of Industry 4.0 with the GC 2400™ Platform can enhance GC workflows to increase efficiency, data quality, and business sustainability
What Are the Key Features of a Smart and Connected GC Lab?
December 9th 2024The potential of smart technologies has evolved into a operational necessity - businesses were faced with the need for remote and automated operations bringing substantial improvements in productivity, efficiency, and operating costs.