The LCGC Blog: Environmental and Social Governance (ESG) in the Hydrocarbon Processing Industry (HPI) is an Opportunity for Industrial–Academic Partnerships


In April 2020, on the heels of the pandemic shutdown, the price of crude oil fell to a negative value for the first time ever. The pandemic sent ripples through an oil and gas industry, which had more ebbed than waned in the United States over the past 10–15 years, primarily due to major successes in extracting oil and gas from low permeability unconventional shale resources, using technologies like hydraulic fracturing and horizontal drilling. But the 2020 shutdown hit many oil and gas companies hard. In some cases, major players in some shale plays have essentially withdrawn all of their development interests. Other companies have been left with insufficient means to service the debts they had accrued during the better times. Going forward, there is a generally positive sentiment about the importance of oil and gas extraction to our collective energy economy, but the downturn has created significant introspection across the industry.

While companies lick their wounds and decide their next moves, an important concept called environmental and social corporate governance (ESG) has come greater into focus. The hydrocarbon extraction and processing industry as a whole has certainly come under greater scrutiny for its potential environmental implications (especially, greenhouse gas emissions) in the past several years. The truth of the matter is that some companies are more progressive and responsible with their actions towards documenting, limiting, and mitigating deleterious environmental and social impacts than others. Even if the fine details about how it is regulated have not been fully formulated, ESG promises to involve some overall metric to rank the environmental and social responsibility efforts and actions of companies. Favorable metrics will be necessary to attract investment dollars in the industry going forward.

It is worth mentioning that, while ESG is discussed very prominently in the hydrocarbon processing industry (HPI), it is a concept that is permeating corporate America, as a whole. A closer look would likely find that virtually all major corporations now have some executive sustainability officer who is focused on reducing waste and improving environmental and social sustainability.

While our research has primarily been involved with assessing the potential environmental impacts of upstream oil and gas production from shale, inevitably we also became involved in the midstream logistics of handling the product, and more importantly the wastewater byproducts. In most shale plays, the volume of water byproduct (so called, produced water) far exceeds the volume of hydrocarbons extracted from an oil and gas well. We have worked with small and large companies to assess the effectiveness of different produced water treatment technologies—the goal being to recycle or reuse the treated water, rather than to simply dispose of it underground, where it has been shown to cause unwanted seismic activity. The success of these technologies will ultimately be driven by their cost, throughput, performance, and robustness.

Our analytical chemistry research has been largely driven by industrial support. We have had the opportunity to discuss the problems with industry leaders in upstream and midstream HPI, and to help develop and improve solutions, through our ability to speciate complex mixtures.

That said, going forward, downstream HPI is likely a bigger opportunity for industrial–academic partnerships. Downstream HPI deals with turning raw products into those that can used by the consumer, including fuels, plastics, and other feedstocks. A prominent way a company can improve their ESG is to reduce reliance on virgin feedstocks and instead, to recycle used products. For example, an abundance of used plastic products can be broken back down into their constituent monomers and used anew.

This concept screams for more development in chemical measurements and analysis. As researchers develop new catalysts, which can be used to selectively decompose plastics, those catalysts need to be characterized (for example, pore structure, porosity, chemical make-up). The next level of complexity comes from the wide range of different plastics desired to be processed. Plastics are essentially reduced into a range of pyrolysis oils. Imagine the varying heteroatom content present both in the plastic feedstock and the finished pyrolysis oil. Different heteroatoms can have particularly deleterious effects on catalyst performance. Depending on the desired use of the recycled feedstock, not only the heteroatom content, but also the olefin and aromatic content of the product oils are desired to be determined.

The downstream HPI market, especially that associated with plastics recycling and driven heavily by a desire for improved ESG, is expected to double in the next 30 years. In many cases, the standard chromatography–mass spectrometry research tools available from manufacturers will not have sufficient capabilities for adequate characterization of recycled hydrocarbon feedstocks. This is a major opportunity for academia to re-engage in the HPI, through the development of novel hardware and software solutions. Gas chromatography literally got its start in HPI.Instead, now think multi-dimensional separation and detection systems implemented for routine process monitoring. It is no small challenge, but it is one modern analytical chemists are ready to address. On the flip side, HPI companies are looking for an edge and will certainly have significant budgets associated with establishing themselves as a responsible leader in the industry through ESG.

The time should be right for the developing of more industry–academic partnerships in HPI, and the driving force is to achieve overall greater sustainability. This feels like it could be a “win” all around for everyone and the environment.

Kevin A. Schug is a Full Professor and Shimadzu Distinguished Professor of Analytical Chemistry in the Department of Chemistry & Biochemistry at The University of Texas (UT) at Arlington. He joined the faculty at UT Arlington in 2005 after completing a Ph.D. in Chemistry at Virginia Tech under the direction of Prof. Harold M. McNair and a post-doctoral fellowship at the University of Vienna under Prof. Wolfgang Lindner. Research in the Schug group spans fundamental and applied areas of separation science and mass spectrometry. Schug was named the LCGC Emerging Leader in Chromatography in 2009 and the 2012 American Chemical Society Division of Analytical Chemistry Young Investigator in Separation Science. He is a fellow of both the U.T. Arlington and U.T. System-Wide Academies of Distinguished Teachers.

Related Videos
Toby Astill | Image Credit: © Thermo Fisher Scientific