Chad Ostrander | Authors

Chad Ostrander is with Hitachi High-Technologies America, San Jose, California.


Investigation of Transferrin Structure via Novel Electron Capture Dissociation Techniques Using a Hybrid Linear Ion Trap Time-of-Flight Mass Spectrometer

Protein and peptide analysis via tandem mass spectrometry (MS-MS) has resulted in a wealth of information regarding protein identification, structure, and abundance levels over the past 10 years. Techniques such as neutral loss scanning and collision-induced dissociation (CID) have been especially helpful in facilitating the identification of a multitude of previously unknown sites of protein phosphorylation. However, many of the techniques used to obtain this information are labor intensive and work inconsistently. To address this problem, much effort has been put forth to find alternative methods of fragmenting peptides and proteins that are less difficult and applicable to a wide gamut of peptide classes. Examples of recently developed dissociation techniques include infrared multiphoton dissociation (IRMPD) and electron transfer dissociation (ETD). The implementation of these new techniques has widened the spectrum of peptides amenable to tandem mass spectral analysis.

Posttranslational Modification Characterization via Electron Capture Dissociation Using a Linear Ion Trap Time-of-Flight Mass Spectrometer

Successful characterization of protein posttranslational modifications (PTMs) is critical to our understanding of many biological processes. Unfortunately, attempts to describe PTMs often prove experimentally difficult and result in ambiguous conclusions. As technologies in the field of mass spectrometry (MS) continue to improve, people are turning increasingly to mass spectral techniques for PTM characterization. Recently, novel modes of peptide fragmentation have emerged that are giving scientists greater ability to elucidate protein posttranslational modification. One example is electron-capture dissociation (ECD), an alternative fragmentation mechanism for use in peptide analysis via tandem mass spectrometry. ECD selectively cleaves N-Cα bonds of the peptide backbone, yielding c- and z-ions without the loss of labile PTMs. ECD therefore holds advantages over conventional fragmentation techniques such as collisionally induced dissociation (CID), which often cleave PTMs from the peptide backbone,..

Electron-Capture Dissociation in a Radio-Frequency Linear Ion Trap

Here we describe a new compact device for electron-capture dissociation (ECD) analysis of large peptides and posttranslational modifications of proteins, which can be difficult to analyze via conventional dissociation techniques such as collision-induced dissociation (CID). The new compact device realizes ECD in a radio frequency (RF) linear ion trap equipped with a small permanent magnet, which is significantly different than the large and maintenance-intensive superconducting magnet required for conventional ECD in Fourier-transform ion cyclotron resonance mass spectrometers. In addition to its compactness and ease of operation, an additional merit of an RF linear ion trap ECD is that its reaction speed is fast, comparable to CID, enabling data acquisition on the liquid-chromatography (LC) time scale. We interfaced the linear-trap ECD device to a time-of-flight mass spectrometer to obtain ECD spectra of phosphorylated peptides injected into a liquid chromatograph, infused glycopeptides, and intact small..

A New Tool for Mass Analysis of Unknown Molecules: High-Resolution Multistep Tandem MS with Wide Dynamic Range Quantitative Analysis

Mass spectrometers are effective for identifying and quantifying unknown molecules, such as disease-related proteins and small molecules in pharmaceutical research and medical diagnosis. In addition, mass spectrometry (MS) can be particularly powerful when analyzing molecules with complex structures, such as posttranslationally modified proteins. Among various MS approaches, high-resolution multistep tandem MS (MS-MS) is an emerging methodology for accurate identification of complex molecules. In this article, we describe a new approach for mass analysis with enhanced quantitative capability combined with high-resolution multistep MS-MS, where the dynamic range of quantitation covers four orders of magnitude.