LCGC’s Senior Technical Editor Jerome Workman, Jr examines the history of chemicals classified as POP, or persistent organic pollutants, and PFAS, or per- and polyfluoroalkyl substances, then reviews their place in today's environment and assesses risks for the future.
We interviewed an AI program (ChatGPT) for LCGC North America asking questions about AI and its role in various applications for separation science to include data analysis, and high performance liquid chromatography (HPLC), hydrophilic-interaction chromatography (HILIC), reversed-phase liquid chromatography (RPLC), liquid chromatography–mass spectrometry (LC–MS), gas chromatography–mass spectrometry (GC–MS), high resolution mass spectrometry (HRIM–MS), high resolution tandem mass spectrometry (HRMS/MS), and related topics.
The monitoring of per- and polyfluoroalkyl substances (PFAS) into food is an important environmental and health concern. Raquel Sendón García, PhD, is a Faculty Member in the Department of Analytical Chemistry of Nutrition and Food Science, and a Faculty of Pharmacy member at the University of Santiago de Compostela in Spain. She has been performing research on food contamination and the presence of potentially harmful chemicals in foods for some time. We recently spoke to her about her work using GC–MS and other analytical techniques to analyze PFAS migration into food from packaging materials.
As our knowledge about PFAS in food continues to develop, and regulations evolve, we must continue to refine our analytical methods.
Given that artificial intelligence (AI) seems to be on everyone’s mind, it’s worth pausing to look at how AI works, and how it can fit into analytical chemistry.
Analysis of unidentified organofluorine compounds and known PFAS in environmental and human samples presents many challenges. Combustion ion chromatography is one technique that can help.