Kate Mosford

Articles by Kate Mosford

Okra-859744-1417772546169.jpg

A team of researchers at the University of Huddersfield, UK, has investigated the potential of okra for emulsification of certain food products using size-exclusion chromatography (SEC) and fourier transform infrared (FTIR) spectroscopy.1 Okra is a flowering plant and originates from Africa. Okra pectins are acidic, random coil polysaccharides composed of galactose, rhamnose, and galacturonic acid. Pectins are used in the food industry for their gelling, stabilizing, and thickening properties. Okra pectins differ quite substantially from those extracted from apple, citrus, and beet in terms of protein and acetyl contents, indicating their greater hydrophobicity and suggesting that pectin derived from okra can be used as an effective emulsifying agent.?

Dr Kevin Cooper of the Institute for Global Food Security at Queen's University Belfast, Northern Ireland, spoke to Kate Mosford of The Column about the importance of accuracy, reliability, and stability in food safety analysis and the role of ultrahigh-pressure liquid chromatography tandem mass spectrometry (UHPLC–MS–MS) in his research.

Dr Sastia Prama Putri of Osaka University, Japan, spoke to Kate Mosford of The Column about advances in metabolomics, the need for authentication of high value food products, and the important role of GC–MS in food analysis.

A team of scientists based in the US has used solid–phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS) to provide the first analysis of volatile organic compounds (VOCs) present in human earwax (cerumen).1

Researcher Christina Agapakis from the University of California, Los Angeles, USA, has come up with an unusual way of making cheese by taking bacteria from various parts of the human body and analyzing the odour of each cheese produced using headspace gas chromatography?mass spectrometry (GC?MS).

Fava_Bean-820287-1408537553458.jpg

Fava beans are a good source of polyphenols and are located in different parts of the plant. Phenolic compounds are thought to contribute to the overall antioxidant activities of plant foods. However, there is a lack of information on the phenolic composition of the seeds (beans) of some edible varieties. This has led a team of researchers based in Chile and Spain to use high performance liquid chromatography (HPLC) to identify the composition of a variety of immature fava seeds.1