This article will focus on the development of an optimized gas chromatography–mass spectrometry (GC–MS) method that improves upon the current EPA and European detection limit requirements for BTEX compounds and meets all other criteria described in EPA Method 524.2 for the measurement of purgeable organic compounds in water by capillary column GC–MS.
This study describes the recovery of compounds above the boiling point of naphthalene achieved by optimizing the thermal desorption chemistry for the determination of volatile organic compounds ranging from C3 to C26 in soil gas samples using Method TO-17. Figures of merit such as breakthrough, precision, linearity, and detection capability are presented, in addition to an evaluation of its real-world capability at sites with moderate diesel and semivolatile polynuclear aromatic hydrocarbon (up to pyrene) contamination, in the presence of high humidity. This research has provided a means to determine a more representative composition of soil gas.
This study describes the need to recover compounds above the boiling point of naphthalene by optimizing the thermal desorption chemistry for the determination of VOCs from C3 to C26 in soil gas samples using Method TO-17. Figures of merit, such as breakthrough, precision, linearity and detection capability will be presented, in addition to evaluating its real-world capability at sites with moderate diesel and semi-volatile polynuclear aromatic hydrocarbon (up to pyrene) contamination, in the presence of high humidity.
This study focuses on United States Environmental Protection Agency (US EPA) Method 524.3 for volatile organic compounds (VOCs) in water using gas chromatography–mass spectrometry (GC–MS).
This article describes a new, single method to replace the two-method approach using United States EPA Methods TO-15 and TO-13A for the analysis of both VOCs and SVOCs in air.
A new, single method to replace the two-method approach using EPA Methods TO-15 and TO-13A to analyze both volatile and semivolatile organic compounds in air