Lee Marotta

Articles by Lee Marotta

drinking water.jpg

This article will focus on the development of an optimized gas chromatography–mass spectrometry (GC–MS) method that improves upon the current EPA and European detection limit requirements for BTEX compounds and meets all other criteria described in EPA Method 524.2 for the measurement of purgeable organic compounds in water by capillary column GC–MS.

key points1489584402166.png

This study describes the recovery of compounds above the boiling point of naphthalene achieved by optimizing the thermal desorption chemistry for the determination of volatile organic compounds ranging from C3 to C26 in soil gas samples using Method TO-17. Figures of merit such as breakthrough, precision, linearity, and detection capability are presented, in addition to an evaluation of its real-world capability at sites with moderate diesel and semivolatile polynuclear aromatic hydrocarbon (up to pyrene) contamination, in the presence of high humidity. This research has provided a means to determine a more representative composition of soil gas.

Thomas-Figure-5-web.jpg

This study describes the need to recover compounds above the boiling point of naphthalene by optimizing the thermal desorption chemistry for the determination of VOCs from C3 to C26 in soil gas samples using Method TO-17. Figures of merit, such as breakthrough, precision, linearity and detection capability will be presented, in addition to evaluating its real-world capability at sites with moderate diesel and semi-volatile polynuclear aromatic hydrocarbon (up to pyrene) contamination, in the presence of high humidity.

i1-547880-1408670608464.jpg

The United States Pharmacopeia (USP) has implemented a revised method for the determination of residual solvents, chapter 467; this revision has brought the methodology of USP 467 into close alignment with European Pharmacopeia (EP) method 2.4.24. The USP and EP determination of class 1 and class 2 residual solvents is performed with static headspace (HS) sample introduction and gas chromatography (GC) with flame ionization detection (FID); class 3 has flexibility in the technique, however, it is often included in the HS analysis.