Columns | Column: Perspectives in Modern HPLC

Quantitative determination of the counterions associated with pharmaceutical salts is a mandatory requirement for quality control. While ion chromatography (IC) is the standard technique in most laboratories, capable of delivering excellent sensitivity, specificity and flexibility, there are other simpler and quicker analytical methodologies that may should be considered for this quality control application.

A universal generic HPLC or UHPLC method with a primary modern column that works well for most drug analyses in a few minutes would be an attractive idea for many laboratories. With advances in column technologies, this ideal scenario is becoming more realistic, as demonstrated in the proposed 2-min generic method shown here. In addition, rationales for the selection of column and operating conditions are discussed, together with ways to extend this generic method as a starting point for stability-indicating applications by simple adjustments of gradient time and range.

HPLC-figure4_web.jpg

The third installment in this series provides an overview of modern practices of separation science in small-molecule drug development. It highlights approaches in HPLC method development and physical/chemical characterization to support process chemistry and formulation development, and for assessment/control of the clinical trial materials. The role of the separation scientist in analytical development and salient chromatographic methodology trends are discussed.

Table1-Web.jpg

This installment provides an overview of high-throughput characterization techniques of drug leads to support small molecule drug discovery programs in a pharmaceutical company. A myriad of analytical chemistry techniques including separation science methodologies are used to confirm the structures and identities, quantitating the concentrations of stock solutions, and measuring key physicochemical properties of the new chemical entities (NCE). A case study is used here to illustrate the details of these applications in high-throughput characterization.