The Column-09-21-2018

figure 11537537117708.png

The Column

This proof-of-principle study shows that polymer-based sorptive extraction probes, coupled with secondary focusing by thermal desorption and analysis by flow-modulated GC×GC–TOF-MS/FID, can be used to separate and identify flavour compounds in milk. As well as comparing the profiles of dairy and non-dairy milks, this article highlights the practical benefits of this sampling procedure, the ability of two-dimensional GC to physically separate components that would coelute in one-dimensional GC, and the use of software tools to improve workflow.

styr small.png

The Column

When a company wishes to commercialize a new pesticide, they must conduct environmental studies and develop analytical methods capable of detecting the pesticide, and its metabolites, in soil and water samples. The methods must be robust and rugged, for easy use in routine analysis. James Stry, a principal investigator at FMC Agricultural Solutions, recently talked to LCGC about best practices he and his team have established for developing such methods, including approaches to meeting a variety of requirements of regulatory bodies, simplifying sample preparation, dealing with matrix effects, choosing an ionization method, and streamlining method development.

figure 1 L1537540250564.png

The Column

The functional properties of polymers, such as poly(lactic-co-glycolic acid) (PLGA), relevant to drug delivery and biomedical devices, are governed by the molecular properties of molar mass, composition, conformation, and branching. This article demonstrates how such polymers are fully characterized, quickly and absolutely, using gel permeation chromatography (GPC) with multi-angle light scattering (MALS) and online viscometry.

figure 1 L1537541918389.png

The Column

Approximately 40% of recombinant proteins that are purified use a histidine tag for easy capture. This article covers how to automate the purification of histidine-tagged proteins and how purification conditions can be optimized to an automated four-step purification scheme that uses affinity-, ion exchange-, and size-exclusion columns. Using a multistep purification scheme removes the manual steps that cause loss of precious proteins and take more time, like dialysis, collection, and reinjecting samples. The final purification scheme reduces a 3–4-day process to 11.5 h from start to finish, all while improving reproducibility, yield, and comparable purity.