The Application Notebook
Thermo Scientific
This application note demonstrates the analysis of intact proteins using a Thermo Scientific Accucore 150-C4 (150 Å pore diameter) HPLC column. Analysis of six proteins ranging in mass from 6 to 45 kDa is carried out in 15 min with pressures compatible with conventional HPLC instrumentation.
Accucore™ HPLC columns use Core Enhanced Technology™ to facilitate fast and high efficiency separations. The 2.6 µm diameter particles have a solid core and a porous outer layer. The optimized phase bonding creates a series of high-coverage, robust phases. The tightly controlled 2.6 µm diameter of Accucore particles results in much lower back pressures than typically seen with sub 2 µm materials. For the analysis of large biomolecules the Accucore pore size has been further optimized and a C4 phase with reduced hydrophobic retention has been prepared. This 150 Å pore size enables the effective analysis of molecules unable to penetrate into smaller diameter pores, whilst the low hydrophobicity C4 phase results in protein separation by hydrophobicity.
Chromatographic separation of proteins at the intact level prior to MS analysis is desirable for reducing sample complexity and maintaining global protein information. In this application note we demonstrate the excellent performance of an Accucore 150-C4 HPLC column for the chromatographic separation of six intact proteins (6–45 kDa).
Accucore 150-C4, 2.6 µm, 100 × 2.1 mm
Vials and closures (P/N MSCERT 4000-34W)
Flow rate: 400 µL/min
Run time: 15 min
Column temperature: 40 °C
Injection details: 2 µL (10 pmol/µL solution of each protein)
UV detector wavelength: 214 nm
Back pressure at starting conditions: 185 bar (c.f. 320 bar on sub 2 µm material)
Software: Thermo Scientific Xcalibur 2.0 SR2
Mobile phase A: 0.1 % TFA in 30:70 acetonitrile:water
Mobile phase B: 0.1 % TFA in 98:2 acetonitrile:water
Gradient: 0–30% B in 8 min, 30–95% B in 2 min, hold at 95% B for 1 min and re-equibrilate for 4 min
Under these conditions, six proteins covering the mass range of 6 to 45 kDa can be separated on an Accucore 150-C4 HPLC column in less than 15 min with back pressures compatible with conventional HPLC equipment. The chromatography is shown in Figure 1 with all of the proteins eluting with sharp symmetrical peaks and being baseline resolved, with the exception of an impurity from carbonic anhydrase which co-elutes with lysozyme.
Figure 1: Chromatogram for six proteins separated on an Accucore 150-C4 HPLC column. 1. insulin 2. cytochrome c 3. lysozyme 4. myoblobin 5. carbonic anhydrase 6. ovalbumin * carbonic anhydrase impurity.
Thermo Fisher Scientific
Tudor Road, Manor Park, Runcorn, Cheshire WA7 1TA, UK
tel. +44 (0) 1928 534110
Navigating the Impact of Funding Cuts: Voices from the Research Community
July 9th 2025Shifts in U.S. federal science funding—driven by the newly established Department of Government Efficiency (DOGE)—are causing delays, uncertainty, and program changes across academic and regulatory research institutions.
18 Scientists from the US and Canada Win Scialog Awards for Advancing Chemical Lab Automation
July 7th 2025Seven research teams from universities across the United States and Canada have been honored for their collaborative efforts that integrate automation and artificial intelligence (AI) to tackle fundamental scientific challenges.
Linking LC-HRMS Features to Aquatic Toxicity: A Nontargeted Approach Without Compound Identification
July 7th 2025A recent study conducted by the University of Amsterdam (Amsterdam, Netherlands) and the University of Queensland (Queensland, Australia) developed a novel prioritization strategy that directly links fragmentation and chromatographic data to aquatic toxicity categories, bypassing the need for identification of individual compounds. LCGC International spoke to Viktoriia Turkina of the University of Amsterdam, lead author of the paper that resulted from this study, about their work.