The answer to the following question was supplied by LCGC's "GC Connections" columnist John Hinshaw.
The answer to the following question was supplied by LCGC's “GC Connections” columnist John Hinshaw.
Q: What are the main causes of GC column degradation or decline in performance?
John Hinshaw: There are four main causes of GC column degradation and performance decline.
First, columns are degraded by the build-up of nonvolatile sample residues that interact with target analytes to cause peak tailing, catalytic decomposition, and ultimately loss of separation. Proper sample preparation, the use of a retention gap, and inlet liner maintenance will help alleviate this problem. Trimming the beginning of a contaminated column can recover some performance. Headspace sampling, when possible, completely eliminates this problem.
Second, chemically active substances in the sample such as derivatization reagents and their by-products can degrade the stationary phase and will lead to significant performance losses. Careful choice of derivatization reagents and avoidance of excessive amounts will help reduce this effect. Some stationary phases are less susceptible to these effects.
Third, the presence of oxygen in the carrier gas from leaks or poor quality gas cylinders will degrade some stationary phases, such as Carbowax and bonded Carbowax types. Attention to carrier gas quality, the use of fresh oxygen filters, and leak-free connections will ensure a longer lifetime for these columns.
Fourth, excessively high operating or conditioning temperatures will age a column prematurely. Never exceed the maximum operating temperature when performing separations, and never exceed the recommended conditioning temperature and duration.
Emerging Trends and Challenges in Detecting Residues and Contaminants in Food in the Exposome Era
June 18th 2025This article describes the analytical challenges of chemical exposomics in food safety. The need for high-throughput, multi-platform approaches—such as LC–HRMS and GC–HRMS with IMS—to capture the full spectrum of potential contaminants in our food supply is emphasised.
New Research Explores Role of Nucleotide Hydrophobicity in Oligonucleotide Separation
June 18th 2025Researchers from Waters and Biospring studied the contribution of nucleotide type and modifications on the retention and resolution of 22–24 nt long oligonucleotides in different chromatographic methods.
A Life Measured in Peaks: Honoring Alan George Marshall (1944–2025)
June 18th 2025A pioneer of FT-ICR Mass Spectrometry, Alan G. Marshall (1944–2025), is best known for co-inventing Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), a transformative technique that enabled ultrahigh-resolution analysis of complex mixtures. Over a career spanning more than five decades at institutions like the University of British Columbia, The Ohio State University, and Florida State University, he published over 650 peer-reviewed papers and mentored more than 150 scientists. Marshall’s work profoundly impacted fields ranging from astrobiology to petroleomics and earned him numerous prestigious awards and fellowships. Revered for his intellect, mentorship, and dedication to science, he leaves behind a legacy that continues to shape modern mass spectrometry.